Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mechanism dihydride

In the previous Sections, bulk specimens were alloyed with hydrogen from the gas phase. It was interesting to see whether hydrogen affects the mechanical properties of titanium in a similar way if metal is in a powder state and hydrogen is introduced by mechanical mixing of the metal powder with titanium dihydride, or the interparticle boundaries axe an insurmountable obstacle for hydrogen an eliminate the effects observed in bulk specimens. [Pg.433]

RhCl(PPhi)i as a homogenous hydrogenation catalyst [44, 45, 52]. The mechanism of this reaction has been the source of controversy for many years. One interpretation of the catalytic cycle is shown in Figure 2.15 this concentrates on a route where hydride coordination occurs first, rather than alkene coordination, and in which dimeric species are unimportant. (Recent NMR study indicates the presence of binuclear dihydrides in low amount in the catalyst system [47].)... [Pg.95]

The racemization mechanism of sec-alcohols has been widely studied [16,17]. Metal complexes of the main groups of the periodic table react through a direct transfer of hydrogen (concerted process), such as aluminum complexes in Meerwein-Ponn-dorf-Verley-Oppenauer reaction. However, racemization catalyzed by transition metal complexes occurs via hydrogen transfer processes through metal hydrides or metal dihydrides intermediates (Figure 4.5) [18]. [Pg.94]

The reversible hydrogenolysis of trfl -(Ph2MeSi)2Pt(PMe2Ph)2 has been discussed in Sections II,B,4 and II,B,7. A mechanism similar to that postulated for hydrogen halide reactions [e.g., Eq. (78)] has been suggested 71, 114) such a dihydride intermediate has not been detected, but some support comes from the identification of H2XSiPtl2(H)(PEt3)2 (X = Cl, I), as shown in Eq. (79) 27). Further discussion is in Section III. [Pg.277]

The detailed decomposition (P-H ehminahon) mechanism of the hydrido(alkoxo) complexes, mer-crs-[lr(H)(OR)Cl(PR 3)3] (R = Me, Et, Pr R = Me, Et H trans to Cl) (56, 58, 60), forming the dihydrides mer-cis-[lr H)2Cl PR )2] (57, 59) along with the corresponding aldehyde or ketone was examined (Scheme 6-8). The hydrido(ethoxo) as well as the hydrido(isopropoxo) complexes 60 could also be prepared by oxidative addition of ethanol and isopropanol to the phosphine complexes 39 [44]. In the initial stage of the P-H elimination, a pre-equiUbrium is assumed in which an unsaturated pentacoordinated product is generated by an alcohol-assisted dissociation of the chloride. From this intermediate the transition state is reached, and the rate-determining step is an irreversible scission of the P-C-H bond. This process has a low... [Pg.183]

Scheme 1 Fundamental steps in Rh-catalyzed alkene hydrogenation involving a dihydride-based mechanism... Scheme 1 Fundamental steps in Rh-catalyzed alkene hydrogenation involving a dihydride-based mechanism...
The hydrogenation of simple alkenes using cationic rhodium precatalysts has been studied by Osborn and Schrock [46-48]. Although kinetic analyses were not performed, their collective studies suggest that both monohydride- and dihydride-based catalytic cycles operate, and may be partitioned by virtue of an acid-base reaction involving deprotonation of a cationic rhodium(III) dihydride to furnish a neutral rhodium(I) monohydride (Eq. 1). This aspect of the mechanism finds precedent in the stoichiometric deprotonation of cationic rhodium(III) dihydrides to furnish neutral rhodium(I) monohydrides (Eq. 2). The net transformation (H2 + M - X - M - H + HX) is equivalent to a formal heterolytic activation of elemental... [Pg.90]

Cofacial ruthenium and osmium bisporphyrins proved to be moderate catalysts (6-9 turnover h 1) for the reduction of proton at mercury pool in THF.17,18 Two mechanisms of H2 evolution have been proposed involving a dihydride or a dihydrogen complex. A wide range of reduction potentials (from —0.63 V to —1.24 V vs. SCE) has been obtained by varying the central metal and the carbon-based axial ligand. However, those catalysts with less negative reduction potentials needed the use of strong acids to carry out the catalysis. These catalysts appeared handicapped by slow reaction kinetics. [Pg.475]

Detailed aspects of the catalytic mechanism remain unclear. However, influence of basic additives on the partitioning of the conventional hydrogenation and reductive cyclization manifolds coupled with the requirement of cationic rhodium pre-catalysts suggests deprotonation of a cationic rhodium(m) dihydride intermediate. Cationic rhodium hydrides are more acidic than their neutral counterparts and, in the context of hydrogenation, their deprotonation is believed to give rise to monohydride-based catalytic cycles.98,98a,98b Predicated on this... [Pg.520]

The transfer reaction utilizes a sacrificial alkene to remove the dihydrogen from the pincer or anthraphos complex first, before the oxidative addition of the target alkane. The elementary reaction steps are slightly different from the thermal reaction, which is discussed in the next section, both in their order and their direction. For simplicity, we describe the symmetric reaction where the sacrificial alkene is ethylene and the reactant is ethane (21b). The elementary reaction steps for the mechanism of this transfer reaction involve IVR, IIIR, VIR, VI, III and IV, where the superscript R stands for the reverse of the elementary steps listed in Section III. These reverse steps (IVR, IIIR, and VIR) involve the sacrificial alkene extracting dihydride from the metal to create the Ir(I) species 8, while steps VI, III and IV involve oxidative addition of target alkane, p-H transfer and olefin loss. [Pg.336]

The elimination of HC1 was proposed to occur also during the H2 activation with the [Pd(PNP)Cl]Cl complexes (PNP = bis-2-(diphenylphosphino)ethyl benzy-lamine, bis-2-(diphenylphosphino)ethyl amine or tris-2-(diphenylphosphino)ethyl amine) [24, 25]. Based on the findings of 31P 1H - and 1H-NMR investigations, the hydride [HPd(PNP)]Cl was detected under H2 atmosphere. The alternative mechanism which involves the oxidative addition of H2 with formation of a Pd(IV)-dihydride intermediate, appeared less likely on the basis of thermodynamic considerations. [Pg.83]

The cationic tantalum dihydride Cp2(CO)Ta(H)2]+ reacts at room temperature with acetone to generate the alcohol complex [Cp2(C0)Ta(H01Pr)]+, which was isolated and characterized [45]. The mechanism appears to involve protonation of the ketone by the dihydride, followed by hydride transfer from the neutral hydride. The OH of the coordinated alcohol in the cationic tantalum alcohol complex can be deprotonated to produce the tantalum alkoxide complex [Cp2(C0)Ta(01Pr)]. Attempts to make the reaction catalytic by carrying out the reaction under H2 at 60 °C were unsuccessful. The strong bond between oxygen and an early transition metal such as Ta appears to preclude catalytic reactivity in this example. [Pg.174]

A review regarding experimental findings, which seemingly speak for the alternatively discussed dihydride mechanism, can be found in I.D. Gridnev, T. Imamoto, Acc. Chem. Res. 2004, 37, 633. However, it must be stressed that verified results such as the pressure dependence of enantioselectivity cannot be described by this model. Models related to the dihydride mechanism and developed... [Pg.292]

Time-proven concepts for the reaction mechanisms of homogeneous hydrogenations follow two approaches which, according to Halperrfs step-wise analysis of hydrogenations using Wilkinsorfs catalysr [25] and the cationic catalyst DI-PHOS [26], respectively, can be grouped into the so-called dihydride or unsaturate routes [27] (Fig. 12.9). [Pg.324]


See other pages where Mechanism dihydride is mentioned: [Pg.128]    [Pg.54]    [Pg.128]    [Pg.54]    [Pg.215]    [Pg.89]    [Pg.252]    [Pg.75]    [Pg.75]    [Pg.80]    [Pg.80]    [Pg.82]    [Pg.85]    [Pg.95]    [Pg.95]    [Pg.581]    [Pg.329]    [Pg.352]    [Pg.11]    [Pg.521]    [Pg.790]    [Pg.800]    [Pg.338]    [Pg.16]    [Pg.25]    [Pg.27]    [Pg.29]    [Pg.30]    [Pg.60]    [Pg.65]    [Pg.90]    [Pg.175]    [Pg.187]    [Pg.206]    [Pg.324]    [Pg.384]    [Pg.405]    [Pg.496]   
See also in sourсe #XX -- [ Pg.25 , Pg.384 , Pg.405 ]




SEARCH



Dihydride

Dihydrides

Hydrogenation Dihydride mechanism

Unsaturated/dihydride mechanism

© 2024 chempedia.info