Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

MCSCF multi-configuration self-consistent

MCSCF multi-configuration self-consistent field... [Pg.94]

MCSCF Multi-Configuration Self-Consistent Field. A means of variationally minimizing the energy of several electron configurations of a given system simultaneously, so as to provide a better description of its electronic structure. [Pg.394]

MCSCF, multi-configuration self-consistent field calculations all calculations are without spin-oibit coupling Cerium-ring distance 2.08 A. [Pg.693]

A configuration interaction calculation uses molecular orbitals that have been optimized typically with a Hartree-Fock (FIF) calculation. Generalized valence bond (GVB) and multi-configuration self-consistent field (MCSCF) calculations can also be used as a starting point for a configuration interaction calculation. [Pg.217]

The Multi-configuration Self-consistent Field (MCSCF) method can be considered as a Cl where not only the coefficients in front of the determinants are optimized by the variational principle, but also the MOs used for constructing the determinants are made optimum. The MCSCF optimization is iterative just like the SCF procedure (if the multi-configuration is only one, it is simply HF). Since the number of MCSCF iterations required for achieving convergence tends to increase with the number of configurations included, the size of MCSCF wave function that can be treated is somewhat smaller than for Cl methods. [Pg.117]

The Multi-Configuration Self-Consistent Field (MCSCF) method includes configurations created by excitations of electrons within an active space. Both the coefficients ca of the expansion in terms of CSFs and the expansion coefficients of the... [Pg.290]

By calculating A.U (R) and Al/ (i ) separately, we can straightforwardly calculate the total adiabatic correction V (R) for any isotopes of A and B. The adiabatic corrections are calculated by numerical differentiation of the multi-configurational self-consistent field (MCSCF) wave functions calculated with Dalton [23]. The nurnerical differentiation was performed with the Westa program developed 1986 by Agren, Flores-Riveros and Jensen [22],... [Pg.325]

The accurate calculation of these molecular properties requires the use of ab initio methods, which have increased enormously in accuracy and efficiency in the last three decades. Ab initio methods have developed in two directions first, the level of approximation has become increasingly sophisticated and, hence, accurate. The earliest ab initio calculations used the Hartree-Fock/self-consistent field (HF/SCF) methodology, which is the simplest to implement. Subsequently, such methods as Mpller-Plesset perturbation theory, multi-configuration self-consistent field theory (MCSCF) and coupled-cluster (CC) theory have been developed and implemented. Relatively recently, density functional theory (DFT) has become the method of choice since it yields an accuracy much greater than that of HF/SCF while requiring relatively little additional computational effort. [Pg.186]

Werner and co-workers [2, 21, 34] used internally-contracted multi-reference configuration-interaction (IC-MRCI) calculations, based on state-averaged (three-state) multi-configuration, self-consistent-field (MCSCF) calculations with large atomic orbital basis sets, to determine the three electronically adiabatic C1(F)+H2 PESs in the reactant arrangement L4, 2A, and lA. These all correlate with X( P) + H2. These three adiabatic electronic states are the IC-MRCI approximations to the three lowest eigenfunctions of Hgi, namely... [Pg.53]

A conceptually straightforward improvement on the CI approximation is to reoptimize the molecular orbitals for a truncated CI expansion. This approach is called multi-configuration self-consistent field method (MCSCF) and its most prominent variant is the complete active space SCF method (CASSCF) [64]. In the first generation of MCSCF methods [65, 66], the CI coefficients C/ in Eq. [Pg.427]

For variational methods, such as Hartree-Fock (HF), multi-configurational self-consistent field (MCSCF), and Kohn-Sham density functional theory (KS-DFT), the initial values of the parameters are equal to zero and 0) thus corresponds to the reference state in the absence of the perturbation. The A operators are the non-redundant state-transfer or orbital-transfer operators, and carries no time-dependence (the sole time-dependence lies in the complex A parameters). Furthermore, the operator A (t)A is anti-Hermitian, and tlie exponential operator is thus explicitly unitary so that the norm of the reference state is preserved. Perturbation theory is invoked in order to solve for the time-dependence of the parameters, and we expand the parameters in orders of the perturbation... [Pg.44]


See other pages where MCSCF multi-configuration self-consistent is mentioned: [Pg.18]    [Pg.460]    [Pg.635]    [Pg.18]    [Pg.460]    [Pg.635]    [Pg.689]    [Pg.982]    [Pg.277]    [Pg.12]    [Pg.252]    [Pg.2]    [Pg.252]    [Pg.310]    [Pg.538]    [Pg.75]    [Pg.155]    [Pg.4]    [Pg.6]    [Pg.66]    [Pg.112]    [Pg.319]    [Pg.65]    [Pg.3]    [Pg.169]   


SEARCH



MCSCF

MCSCF (Multi-Configuration Self

MCSCF (multi-configurational self

Multi configuration

Multi-configuration self-consistent

Self multi-configuration

© 2024 chempedia.info