Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Maxwell-Boltzmann theory

The effect of temperature on the distribution of energy levels for a given species can be described by the Maxwell-Boltzmann theory, which relates the variation of the number of molecules with an energy equal to or greater than a given energy level to the absolute temperature. Thus... [Pg.42]

The Maxwell-Boltzmann theory strictly applies to molecules in the gas phase, but the same concepts apply equally well to the distribution of the velocities among molecules in a solution. See J, A. Campbell, Why Do Chemical Reactions Occur Prentice-Hall, Englewood Cliffs. N.J.. 1965, for a discussion of this topic. [Pg.43]

Examining transition state theory, one notes that the assumptions of Maxwell-Boltzmann statistics are not completely correct because some of the molecules reaching the activation energy will react, lose excess vibrational energy, and not be able to go back to reactants. Also, some molecules that have reacted may go back to reactants again. [Pg.166]

Translational energy, which may be directly calculated from the classical kinetic theory of gases since the spacings of these quantized energy levels are so small as to be negligible. The Maxwell-Boltzmann disuibution for die kinetic energies of molecules in a gas, which is based on die assumption diat die velocity specuum is continuous is, in differential form. [Pg.43]

To understand how collision theory has been derived, we need to know the velocity distribution of molecules at a given temperature, as it is given by the Maxwell-Boltzmann distribution. To use transition state theory we need the partition functions that follow from the Boltzmann distribution. Hence, we must devote a section of this chapter to statistical thermodynamics. [Pg.80]

The frequency with which the transition state is transformed into products, iT, can be thought of as a typical unimolecular rate constant no barrier is associated with this step. Various points of view have been used to calculate this frequency, and all rely on the assumption that the internal motions of the transition state are governed by thermally equilibrated motions. Thus, the motion along the reaction coordinate is treated as thermal translational motion between the product fragments (or as a vibrational motion along an unstable potential). Statistical theories (such as those used to derive the Maxwell-Boltzmann distribution of velocities) lead to the expression ... [Pg.140]

Transition State Theory [1,4] is the most frequently used theory to calculate rate constants for reactions in the gas phase. The two most basic assumptions of this theory are the separation of the electronic and nuclear motions (stemming from the Bom-Oppenheimer approximation [5]), and that the reactant internal states are in thermal equilibrium with each other (that is, the reactant molecules are distributed among their states in accordance with the Maxwell-Boltzmann distribution). In addition, the fundamental hypothesis [6] of the Transition State Theory is that the net rate of forward reaction at equilibrium is given by the flux of trajectories across a suitable phase space surface (rather a hypersurface) in the product direction. This surface divides reactants from products and it is called the dividing surface. Wigner [6] showed long time ago that for reactants in thermal equilibrium, the Transition State expression gives the exact... [Pg.125]

The approach that we will follow is known as the Debye-Hiickel theory. The activity laws discussed in the following are derived from a knowledge of electrostatic considerations, and apply to ions in solution that have an energy distribution that follows the well-known Maxwell-Boltzmann law. Strong electrostatic forces affect the behaviour and the mean positions of all ions in solution. [Pg.45]

The standard theories of chemical kinetics are equilibrium theories in which a Maxwell-Boltzmann distribution of reactants is postulated to persist during a reaction.68 The equilibrium theory first passage time is the TV -> oo limit in Eq. (6), Corrections to it then are to be expected when the second term in this equation is no longer negligible, i.e., when N is not much greater than e — e- )-1. The mean first passage time and rate of activation deviate from their equilibrium value by more than 10% when... [Pg.156]

A. Fick, Ann. Phys. (Leipzig) 170, 50 (1855). He actually set up his two laws for the temporal spreading of the concentration of a tracer substance, not for the probability. The first evolution equation for a probability was the Boltzmann equation [L. Boltzmann Vorlesungen tiber Gastheorie I (J. A. Barth, Leipzig, 1896)], following Maxwell s theory of gas kinetics. [Pg.260]

Maxwell-Boltzmann particles are distinguishable, and a partition function, or distribution, of these particles can be derived from classical considerations. Real systems exist in which individual particles are indistinguishable. For example, individual electrons in a solid metal do not maintain positional proximity to specific atoms. These electrons obey Fermi-Dirac statistics (133). In contrast, the quantum effects observed for most normal gases can be correlated with Bose-Einstein statistics (117). The approach to statistical thermodynamics described thus far is referred to as wave mechanics. An equivalent quantum theory is referred to as matrix mechanics (134—136). [Pg.248]

Today, non-equilibrium reaction theory has been developed. Unlike the absolute rate theory, it does not require the fulfilment of the Maxwell-Boltzmann distribution. Calculations are carried out on large computers, enabling one to obtain abundant information on the dynamics of elementary chemical acts. The present situation is extensively clarified in the proceed-dings of two symposia in the U.S.A. [23, 24]. [Pg.56]

In the kinetic theory of gases, the molecules are assumed to be smooth, rigid, and elastic spheres. The only kinetic energy considered is that from the translational motion of the molecules. In addition, the gas is assumed to be in an equilibrium state in a container where the gas molecules are uniformly distributed and all directions of the molecular motion are equally probable. Furthermore, velocities of the molecules are assumed to obey the Maxwell-Boltzmann distribution, which is described in the following section. [Pg.170]

We now proceed to develop a specific expression for the rate constant for reactants where the velocity distributions /a( )(va) and /B(J)(vB) for the translational motion are independent of the internal quantum state (i and j) and correspond to thermal equilibrium.4 Then, according to the kinetic theory of gases or statistical mechanics, see Appendix A.2.1, Eq. (A.65), the velocity distributions associated with the center-of-mass motion of molecules are the Maxwell-Boltzmann distribution, a special case of the general Boltzmann distribution law ... [Pg.26]

The previously described theory in its original form assumes that the classical kinetic theory of gases is applicable to the electron gas, that is, electrons are expected to have velocities that are temperature dependent according to the Maxwell-Boltzmann distribution law. But, the Maxwell-Boltzmann energy distribution has no restrictions to the number of species allowed to have exactly the same energy. However, in the case of electrons, there are restrictions to the number of electrons with identical energy, that is, the Pauli exclusion principle consequently, we have to apply a different form of statistics, the Fermi-Dirac statistics. [Pg.19]

These two different concepts lead to different mathematical expressions which can be tested with the experimental data. The derivation is similar to that of equations (1-5) but with the inclusion of a term, calculated from the Maxwell-Boltzmann distribution, for the fraction of molecules in the activated state. With these formulas it can be shown that when the reciprocal of the velocity constant is plotted against the reciprocal of the initial pressure a straight line is produced, according to Theory I, but a curved line is produced if Theory II is correct. Moreover the extent of the curvature depends on the complexity of the molecule. It is found that simple molecules like nitrous oxide give astraight line, and more complicated molecules, like azomethane, give er curved line. ... [Pg.43]

In Fermi-Dirac statistics each state can accommodate at most only two particles with opposed spins. In Bose-Einstein statistics, just as in the classical Maxwell-Boltzmann statistics, there is no limitation to the number of particles in a given state. In classical statistics the particles in the same state were assumed to be distinguishable one from the other. As this assumption has been shown in quantum theory to be incorrect the particles in the same state in Bose-Einstein quantum statistics are indistinguishable. Interchanges of two of the par-... [Pg.292]


See other pages where Maxwell-Boltzmann theory is mentioned: [Pg.68]    [Pg.68]    [Pg.166]    [Pg.43]    [Pg.161]    [Pg.273]    [Pg.270]    [Pg.102]    [Pg.216]    [Pg.282]    [Pg.285]    [Pg.290]    [Pg.290]    [Pg.165]    [Pg.242]    [Pg.248]    [Pg.102]    [Pg.273]    [Pg.2]    [Pg.125]    [Pg.56]    [Pg.165]    [Pg.101]    [Pg.10]    [Pg.52]    [Pg.65]    [Pg.85]    [Pg.189]    [Pg.10]    [Pg.271]   
See also in sourсe #XX -- [ Pg.42 ]




SEARCH



Maxwell-Boltzmann

© 2024 chempedia.info