Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Matrix effects discussion

The conversion of secondary ion intensities into concentration values is, however, complicated by the fact that all secondary ion emissions exhibit a strong sensitivity to the chemistry of the substrate s surface during sputtering. This is otherwise referred to as the matrix effect. Matrix effects (discussed in Section 3.3.2.2) can result in secondary ion yield variations that span orders of magnitude. [Pg.259]

In the discussion so far we have considered the typical LEIS experiment only, i.e. large angles of incidence of exit relative to the surface plane. Under these conditions, in general, quantitative composition analysis is possible, because the ion-target interaction can be considered as a binary collision, because of the absence of matrix effects (see below). [Pg.154]

Incineration of a collection of polymers with 10 different kinds of brominated flame retardants has been studied under standardized laboratory conditions using varying parameters including temperature and air flow. Polybrominated diphenyl ethers like the deca-, octa-, and pentabromo compounds yield a mixture of brominated dibenzofurans while burning in polymeric matrices. Besides cyclization, debromination/hydrogenation is observed. Influence of matrix effects and burning conditions on product pattern has been studied the relevant mechanisms have been proposed and the toxicological relevance is discussed. [Pg.363]

In Section 8.2.8 we have discussed the standard addition method as a means to quantitate an analyte in the presence of unknown matrix effects cf. Section 13.9). While the matrix effect is corrected for, the presence of other emalytes may still interfere with the analysis. The method can be generalized, however, to the simultaneous analysis of p analytes. Multiple standard additions are applied in order to determine the analytes of interest using many q > p) analytical sensors. It... [Pg.367]

The analytical response generated by an immunoassay is caused by the interaction of the analyte with the antibody. Although immunoassays have greater specificity than many other analytical procedures, they are also subject to significant interference problems. Interference is defined as any alteration in the assay signal different from the signal produced by the assay under standard conditions. Specific (cross-reactivity) and nonspecific (matrix) interferences may be major sources of immunoassay error and should be controlled to the greatest extent possible. Because of their different impacts on analyses, different approaches to minimize matrix effects and antibody cross-reactivity will be discussed separately. [Pg.683]

Electrospray ionization (ESI) and APCI are the two popular API techniques that will be discussed here. The applications to the analysis of pesticides that will be discussed include imidazolinone herbicides, phenoxy acid herbicides, and A-methyl carbamate insecticides. Matrix effects with respect to quantitation also will be discussed. Eor the... [Pg.766]

Many instruments utilize a double beam principle in that radiation absorbed or emitted by the sample is automatically compared with that associated with a blank or standard. This facilitates the recording of data and corrects for matrix effects and instrumental noise and drift. Instrumentation for the generation of radiation is varied and often peculiar to one particular technique. It will be discussed separately in the relevant sections. Components (b) and (c), however, are broadly similar for most techniques and will be discussed more fully below. [Pg.277]

With the application of FIA in the mixture analytical mode for the analysis of environmental samples and after a marginal sample pretreatment by SPE, matrix effects are a high probability. But, as cited previously [27—31], matrix effects were not only observed with FIA but also in LC-MS and MS—MS modes. Advice to overcome these problems by, e.g. an improved sample preparation, dilution of the analyte solution, application of stable isotopic modification of LC conditions [29] or even application of two-dimensional LC separations [27], postcolumn standard addition [29], addition of additives into the mobile phase (e.g. propionic acid, ammonium formate) [34,35] or even matrix compounds [32] were proposed and discussed. [Pg.180]

Luminescence is often much more sensitive to molecular dynamics than other optical techniques where temperature, viscosity, pH and solvent effects can have a significant influence on the emission response. Analyte degradation for light sensitive fluors and photobleaching for static measurements also influence the emission signal. Because of the wide variety of potential matrix effects, a thorough investigation should be conducted or the sample matrix well understood in terms of its potential impact on emission response. A complete discussion on the fate of the excited states and other measurement risk considerations can be found elsewhere. ... [Pg.348]

The initial step of the reaction, Eq. (7), provides the individual metal sulfide molecules via reaction of the M2+ ions with H2S. In the case of films derived from fatty acids, the two carboxylate functions, associated with the M2+ ion, are the sink for the two protons released from the reaction. The diffusion and coalescence of the individual MS molecules to give MS particles are depicted in Eq. (8). Despite an abundance of literature concerning Q-state particle formation in LB films, there has been little discussion relating to mechanistic aspects of how the nature of the LB support matrix effects the processes depicted in Eq. (7) and (8). The remainder of this section outlines the mechanistic and kinetic insights gained into these processes over the course of study of metal chalcogenide formation in LB films. [Pg.257]

The theory and application of a Hadamard matrix were discussed by Ozil and Rochat [18]. This design is an optimum strategy leading to good accuracy in the main effects... [Pg.46]

Multi dimensional quantum mechanical calculations are needed for the quantitative description of the effects discussed above. Rigorously stated, such calculations are very laborious. In this connection, considerable attention has been paid during the last two decades to the development of simplified methods for resolving the multi-dimensional problems. We refer, for instance, to the method of classic S-matrix [60] and the quantum-mechanical method of the transition state [61]. The advantage of these methods is the use of realistic potential energy surfaces the shortcoming is the fact that only... [Pg.49]

This paper discusses SIMS as a multi-dimensional technique for the analysis of inorganic and organic materials. The paper is divided into two parts inorganic and organic (or molecular) SIMS. The inorganic SIMS part focuses on the methods of quantitative analysis and depth profiling applications. In particular, SIMS matrix effects are defined and the physical models and empirical methods used to quantify SIMS results are reviewed. [Pg.162]


See other pages where Matrix effects discussion is mentioned: [Pg.110]    [Pg.810]    [Pg.68]    [Pg.75]    [Pg.684]    [Pg.692]    [Pg.832]    [Pg.833]    [Pg.1096]    [Pg.770]    [Pg.83]    [Pg.207]    [Pg.221]    [Pg.26]    [Pg.414]    [Pg.347]    [Pg.413]    [Pg.102]    [Pg.430]    [Pg.11]    [Pg.192]    [Pg.231]    [Pg.278]    [Pg.440]    [Pg.515]    [Pg.172]    [Pg.381]    [Pg.1]    [Pg.160]    [Pg.217]    [Pg.307]    [Pg.407]    [Pg.176]    [Pg.279]    [Pg.6]    [Pg.140]   
See also in sourсe #XX -- [ Pg.47 , Pg.50 ]




SEARCH



Matrix effects

© 2024 chempedia.info