Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass transfer/transport mathematical formulation

There are two mathematical methods for formulating transport by random motion. The first, often called a mass transfer model (Cussler, 1984), relates the net flux to the difference in occupation numbers between two adjacent subsystems, A and B ... [Pg.785]

A general mathematical formulation and a detailed analysis of the dynamic behavior of this mass-transport induced N-NDR oscillations were given by Koper and Sluyters [8, 65]. The concentration of the electroactive species at the electrode decreases owing to the electron-transfer reaction and increases due to diffusion. For the mathematical description of diffusion, Koper and Sluyters [65] invoke a linear diffusion layer approximation, that is, it is assumed that there is a diffusion layer of constant thickness, and the concentration profile across the diffusion layer adjusts instantaneously to a linear profile. Thus, they arrive at the following dimensionless set of equations for the double layer potential, [Pg.117]

The remaining chapters in this book are organized as follows. Chapter 2 provides a brief introduction to the mesoscale description of polydisperse systems. There, the mathematical definition of a number-density function (NDF) formulated in terms of different choices for the internal coordinates is described, followed by an introduction to population-balance equations (PBE) in their various forms. Chapter 2 concludes with a short discussion on the differences between the moment-transport equations associated with the PBE and those arising due to ensemble averaging in turbulence theory. This difference is very important, and the reader should keep in mind that at the mesoscale level the microscale turbulence appears in the form of correlations for fluid drag, mass transfer, etc., and thus the mesoscale models can have non-turbulent solutions even when the microscale flow is turbulent (i.e. turbulent wakes behind individual particles). Thus, when dealing with turbulence models for mesoscale flows, a separate ensemble-averaging procedure must be applied to the moment-transport equations of the PBE (or to the PBE itself). In this book, we are primarily... [Pg.27]

For better understanding of the mass transfer mechanism in LM, mathematical modeling of mass transport has been carried out by various research groups [91]. Modeling of processes can not only be helpful for simulating the mass transfer, which helps in the optimization of process parameters with less experimental trials and less human efforts, but it can also be very useful for the knowledge of the transfer phenomena. The modeling incorporates the mathematical formulation of various steps involved in the overall mass... [Pg.802]

The engineering science of transport phenomena as formulated by Bird, Stewart, and Lightfoot (1) deals with the transfer of momentum, energy, and mass, and provides the tools for solving problems involving fluid flow, heat transfer, and diffusion. It is founded on the great principles of conservation of mass, momentum (Newton s second law), and energy (the first law of thermodynamics).1 These conservation principles can be expressed in mathematical equations in either macroscopic form or microscopic form. [Pg.25]

However, the two-sink model as well as other existing adsorption (sink) models do not seem to be able to describe the strong asymmetry between the adsorption/desorption of VOCs on/from indoor surface materials (the desorption process is much slower than the adsorption process). Diffusion combined with internal adsorption is assumed to be capable of explaining the observed asymmetry. Diffusion mechanisms have been considered to play a role in interactions of VOCs with indoor sinks. Dunn and Chen (1993) proposed and tested three unified, diffusion-limited mathematical models to account for such interactions. The phrase unified relates to the ability of the model to predict both the ad/absorption and desorption phases. This is a very important aspect of modeling test chamber kinetics because in actual applications of chamber studies to indoor air quality (lAQ), we will never be able to predict when we will be in an accumulation or decay phase, so that the same model must apply to both. Development of such models is underway by different research groups. An excellent reference, in which the theoretical bases of most of the recently developed sorption models are reviewed, is the paper by Axley and Lorenzetti (1993). The authors proposed four generic families of models formulated as mass transport modules that can be combined with existing lAQ models. These models include processes such as equilibrium adsorption, boundary layer diffusion, porous adsorbent diffusion transport, and conveetion-diffusion transport. In their paper, the authors present applications of these models and propose criteria for selection of models that are based on the boundary layer/conduction heat transfer problem. [Pg.165]


See other pages where Mass transfer/transport mathematical formulation is mentioned: [Pg.7]    [Pg.114]    [Pg.516]    [Pg.73]    [Pg.29]    [Pg.9]    [Pg.256]    [Pg.26]    [Pg.123]    [Pg.109]    [Pg.282]    [Pg.183]    [Pg.188]    [Pg.334]   
See also in sourсe #XX -- [ Pg.178 , Pg.179 ]




SEARCH



Mass transfer/transport

Mass transport

Mathematical formulation

© 2024 chempedia.info