Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Manganese electrophiles

The reaction of the complex salt 6a with the arylamine 12 affords by regio-selective electrophilic substitution the iron complex 13 [88] (Scheme 11). The oxidative cyclization of complex 13 with very active manganese dioxide provides directly mukonine 14, which by ester cleavage was converted to mukoeic acid 15 [89]. Further applications of the iron-mediated construction of the carbazole framework to the synthesis of 1-oxygenated carbazole alkaloids include murrayanine, koenoline, and murrayafoline A [89]. [Pg.124]

The carbazole-1,4-quinol alkaloids are also accessible by the iron-mediated arylamine cyclization (Scheme 14). Electrophilic substitution reaction of the arylamine 24 with the complex salts 6a and 6b affords the iron complexes 25. Protection to the acetates 26 and oxidative cyclization with very active manganese dioxide leads to the carbazoles 27, which are oxidized to the carbazole-... [Pg.125]

Different primary, secondary aryl or heteroaryl manganese bromides 519 were prepared by reaction of activated manganese [prepared form manganese dichloride, lithium and a catalytic amount (15%) of 2-phenylpyridine as electron carrier, in THF] with the corresponding brominated compounds 516. These intermediates react with different electrophiles in THF at 0°C with or without copper chloride, to yield the corresponding products 20 (Scheme 144). ... [Pg.731]

Using this method, the electrophilic aromatic substitution of the electron-rich arylamine 578 by the molybdenum-complexed cation 577 affords regio- and stereoselectively the molybdenum complexes 579. Cyclization with concomitant aromatization and demetalation using activated manganese dioxide leads to the carbazole derivatives 568 (8,10,560) (Scheme 5.26). [Pg.208]

Electrophilic substitution of 3-methoxy-4-methylaniline (655) by the complex 663 leads to the molybdenum complex 664. Oxidative cyclization of complex 664 with concomitant aromatization using activated commercial manganese dioxide provides 2-methoxy-3-methylcarbazole (37) in 53% yield (560). In contrast, cyclization of the corresponding tricarbonyliron complex to 37 was achieved in a maximum yield of 11 % on a small scale using iodine in pyridine as the oxidizing agent (see Scheme 5.49). [Pg.225]

Electrophilic aromatic substitution of 708 with the iron-coordinated cation 602 afforded the iron-complex 714 quantitatively. The iron-mediated quinone imine cyclization of complex 714, by sequential application of two, differently activated, manganese dioxide reagents, provided the iron-coordinated 4b,8a-dihydrocarbazole-3-one 716. Demetalation of the iron complex 716 with concomitant... [Pg.233]

Electrophilic substitution at the arylamine 709 using the complex salt 602, provided the iron complex 725 quantitatively. Sequential, highly chemoselective oxidation of the iron complex 725 with two, differently activated, manganese dioxide reagents provided the tricarbonyliron-complexed 4b,8a-dihydrocarbazol-3-one (727) via the non-cyclized quinone imine 726. Demetalation of the tricarbonyliron-complexed 4b,8a-dihydrocarbazol-3-one (727), followed by selective O-methylation, provided hyellazole (245) (599,600) (Scheme 5.70). [Pg.236]

Electrophilic aromatic substitution of the arylamine 780a using the iron-complex salt 602 afforded the iron-complex 785. Oxidative cyclization of complex 785 in toluene at room temperature with very active manganese dioxide afforded carbazomycin A (260) in 25% yield, along with the tricarbonyliron-complexed 4b,8a-dihydro-3H-carbazol-3-one (786) (17% yield). The quinone imine 786 was also converted to carbazomycin A (260) by a sequence of demetalation and O-methylation (Scheme 5.86). The synthesis via the iron-mediated arylamine cyclization provides carbazomycin A (260) in two steps and 21% overall yield based on 602 (607-609) (Scheme 5.86). [Pg.245]

The total synthesis of carbazomycin C (262) was achieved by executing similar reaction sequences as in the iron-mediated arylamine cyclization route described for the synthesis of carbazomycin B (261) (see Scheme 5.87). The electrophilic substitution of the arylamine 780b using the complex salt 779 afforded the iron complex 797, which was transformed to the corresponding acetate 798. Using very active manganese dioxide, compound 798 was cyclized to O-acetylcarbazomycin C (799). Finally, saponification of the ester afforded carbazomycin C (262) (four steps and 25% overall yield based on 779) (611) (Scheme 5.90). [Pg.250]

The total synthesis of carbazomycin D (263) was completed using the quinone imine cyclization route as described for the total synthesis of carbazomycin A (261) (see Scheme 5.86). Electrophilic substitution of the arylamine 780a by reaction with the complex salt 779 provided the iron complex 800. Using different grades of manganese dioxide, the oxidative cyclization of complex 800 was achieved in a two-step sequence to afford the tricarbonyliron complexes 801 (38%) and 802 (4%). By a subsequent proton-catalyzed isomerization, the 8-methoxy isomer 802 could be quantitatively transformed to the 6-methoxy isomer 801 due to the regio-directing effect of the 2-methoxy substituent of the intermediate cyclohexadienyl cation. Demetalation of complex 801 with trimethylamine N-oxide, followed by O-methylation of the intermediate 3-hydroxycarbazole derivative, provided carbazomycin D (263) (five steps and 23% overall yield based on 779) (611) (Scheme 5.91). [Pg.250]

Reaction of the 5-aminochromene 1044 with the complex salt 577 provided via an electrophilic aromatic substitution regio- and diastereoselectively the molybdenum complex 1050. The oxidative cyclization of complex 1050 with concomitant aromatization and demetalation using activated manganese dioxide led directly to girinimbine (115) in 50% yield. Oxidation of girinimbine (115) with DDQ in methanol afforded murrayacine (124) in 64% yield (660) (Scheme 5.161). [Pg.293]

The reactivity of d butatrienylidene complexes towards simple electrophiles is rather unexplored. The manganese complexes [(C5H4R)(P-P)Mn=C=C=C=C (SnPh3)2[ (R=H, Me P-P = dmpe, depe) were found to react ivith [NBu4]F/H20 to give the unsubstituted butatrienylidene complexes [(C5H4R)(P-P) Mn=C=C=C=CH2] (see Scheme 3.9) [4, 5]. [Pg.118]

An electrophilic substitution of potential synthetic value but one which is rarely utilized is the introduction of a mono- or di-acetoxymethyl group by the action of manganese(III) acetate on a coumarin. This ring system is more amenable than many to this reagent and a variety of products may be obtained by altering the ratio of reactants (Scheme 12) (79BCJ2386). [Pg.680]

Among the oxidants that have been used to generate radicals, manganese (HI) acetate has emerged as a powerful reagent to mediate radical cyclizations.147 The manganese(III) acetate-mediated oxidation of enolizable carbonyl compounds is one of the best methods available for the cyclization of electrophilic radicals. The substrates are vety easily prepared by standard alkylation and acylation reactions. Radicals are formed with high selectivity by oxidation of acidic C—H bonds, and, because the reaction is an oxi-... [Pg.806]

Electrophilic attack on //-vinylidene complexes can occur either on the methylene carbon, or at the metal-metal bond. With the manganese complexes (45, R = H or Me), protonation affords the//-carbyne complexes (46), which in the case of R = Me, exist in the stereoisomeric forms shown (57). Interconversion of the two forms is slow at room temperature ... [Pg.81]


See other pages where Manganese electrophiles is mentioned: [Pg.309]    [Pg.309]    [Pg.8]    [Pg.994]    [Pg.1042]    [Pg.87]    [Pg.90]    [Pg.123]    [Pg.133]    [Pg.220]    [Pg.31]    [Pg.212]    [Pg.252]    [Pg.252]    [Pg.61]    [Pg.39]    [Pg.252]    [Pg.449]    [Pg.339]    [Pg.251]    [Pg.14]    [Pg.47]    [Pg.189]    [Pg.414]    [Pg.374]    [Pg.704]    [Pg.712]    [Pg.807]    [Pg.99]    [Pg.405]    [Pg.114]   
See also in sourсe #XX -- [ Pg.320 ]




SEARCH



Manganese electrophilic addition with

© 2024 chempedia.info