Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Maillard reactions flavor formation

Many desirable meat flavor volatiles are synthesized by heating water-soluble precursors such as amino acids and carbohydrates. These latter constituents interact to form intermediates which are converted to meat flavor compounds by oxidation, decarboxylation, condensation and cyclization. 0-, N-, and S-heterocyclics including furans, furanones, pyrazines, thiophenes, thiazoles, thiazolines and cyclic polysulfides contribute significantly to the overall desirable aroma impression of meat. The Maillard reaction, including formation of Strecker aldehydes, hydrogen sulfide and ammonia, is important in the mechanism of formation of these compounds. [Pg.169]

The most practical method for preventing WOF in meat products is to add antioxidants prepared from natural precursors such as sugars and amino adds by heating them to produce constituents that not only act as antioxidants but serve to enhance meaty flavor as well. The resulting Maillard products have been known to have antioxidant activity in lipid systems (6-8). It is assumed that the antioxidative property of the Maillard reaction is assodated with the formation of low molecular weight reductones and high molecular weight melanoidins (6, 7, 9-13). [Pg.118]

The volatile compounds formed by the Maillard reaction are only one group of flavor compounds in foods. Schutte (1) presents a brief summary of the major classes and their modes of formation from precursors. Some of them can be formed by different pathways. An example is the furans, which can be formed by non-enzymatic browning reaction but also by biotransformation. [Pg.186]

The majority of heterocyclic compounds are formed through thermal interactions of reducing sugars and amino acids, known as Maillard reactions. Other thermal reactions such as hydrolytic and pyrolytic degradation of food components (e.g. sugars, amino acids and vitamins) and the oxidation of lipids also contribute to the formation of heterocyclic compounds responsible for the complex flavor of many foodstuffs. [Pg.105]

Alkylpyrazines have been recognized as important trace flavor components of a large number of cooked, roasted, toasted and deep-fat fried foods (3). As a rule, alkylpyrazines have a roasted nut-like odor and flavor. Formation pathways for alkylpyrazines have been proposed by numerous researchers (4, 5, 6). Model studies suggest that they are minor products of the Maillard reaction. [Pg.106]

In addition to simple model systems, more complex systems which are closer to actual foodstuffs have been used to investigate the formation of flavor chemicals in the Maillard reaction. Sixty-three volatile chemicals were isolated and identified from starch heated with glycine (4). When beef fat was used as a carbonyl compound precursor in a Maillard model system with glycine, 143 volatile chemicals were identified (6). These included fifteen n-alkanes, twelve n-alkenes, thirteen n-aldehydes, thirteen 2-ketones, twelve n-alcohols, and eleven n-alkylcyclohexanes. Recently, the effect of lipids and carbohydrates on the thermal generation of volatiles from commercial zein was studied (7). [Pg.135]

Some pyrrole derivatives have pleasant flavor. For example, pyrrole-2-carboxaldehyde gives a sweet and corn-like odor and 2-acetylpyrrole has caramel-like flavor. However, some pyrroles have been found to contribute to off-flavor of food products (24). Pyrroles have not received as much attention as flavor components as other heterocyclic Maillard reaction products such as pyrazines and thiazoles even though the number of derivatives identified is almost the same as that of pyrazines (Figure 1). Proposed formation mechanisms of pyrroles in the Maillard reaction systems are similar to those of thiophenes (Figures 2). [Pg.138]

The importance of Maillard reaction products to the flavor of foods has received considerable attention. One group of Maillard products, the alkylpyrazines, are thought to contribute roasted, toasted and nutty flavor notes to a variety of foods. Several reviews have detailed the presence of pyrazines in a wide variety of foods (1-7). Considerable work has previously focused on mechanisms of formation and the effects of various parameters on pyrazine formation (8-17). Part one of this study reported on the effects of type of amino acid and type of sugar on the kinetics and distribution pattern of pyrazines formed (18). The current study investigates the effect of pH and water activity on the kinetics of alkylpyrazines formation. [Pg.196]

N, S and 0 heterocyclic compounds, along with noncyclic sulfur compounds and hydrocarbons, are predominant in "meaty" flavor volatiles. The mechanisms of heterocyclic formation by Maillard and pyrolysis reactions have been reviewed by Vemin and Parkanyi (57) and the Maillard reaction itself is a recurring subject of review (58). Since other speakers contributing to this volume will discuss these aspects of meat flavor, they will not be repeated in this presentation. [Pg.430]

The flavor industry has introduced, over the years, methods of developing meat flavors by processing appropriate precursors under carefully controlled reaction conditions. As a result, meat flavors having a remarkably genuine meat character in the beef, chicken and pork tonalities are available for the food industry. It has repeatedly been stated that the Maillard reaction is particularly important for the formation of meat flavors. However, of the 600 volatile compounds isolated from natural beef aroma, only 12% of them find their origin in sugar/amino acid interactions and of these 70% are pyrazine derivatives. [Pg.433]

Heterocyclic compounds are dominant among the aroma compounds produced in the Maillard reaction, and sulfur-containing heterocyclics have been shown to be particularly important in meat-like flavors. In a recent review, MacLeod (6) listed 78 compounds which have been reported in the literature as possessing meaty aromas seven are aliphatic sulfur compounds, the other 71 are heterocyclic of which 65 contain sulfur. The Strecker degradation of cysteine by dicarbonyls is an extremely important route for the formation of many heterocyclic sulfur compounds hydrogen sulfide and mercaptoacetaldehyde are formed by the decarboxylation and deamination of cysteine and provide reactive intermediates for interaction with other Maillard products. [Pg.443]

F. Jousse, T. Jongen, W. Agterof, S. Russell, and P. Braat, Simplified kinetic scheme of flavor formation by the Maillard reaction, J. Food Sci., 2002, 67, 2534-2542. [Pg.179]

Special flavor formation for crumb chocolate takes place in the plant shown schematically in Fig. 14.28, left. In this system, so-called Maillard reactions between amino acids and reducing sugars occur in 1 to 2 minutes at 130°C, producing the classic flavors usually found in Great Britain, Scandinavia, and Japan. The process requires a few percent of moisture, which is added separately and removed in the vacuum after the reaction. The ZSK process saves on expensive vacuum dryers requiring several hours residence time. [Pg.288]

The flavors produced by the Maillard reaction also vary widely. In some cases, the flavor is reminiscent of caramelization. The Strecker degradation of a-amino acids is a reaction that also significantly contributes to the formation of flavor compounds. The... [Pg.94]


See other pages where Maillard reactions flavor formation is mentioned: [Pg.246]    [Pg.42]    [Pg.558]    [Pg.110]    [Pg.311]    [Pg.567]    [Pg.327]    [Pg.334]    [Pg.36]    [Pg.14]    [Pg.15]    [Pg.263]    [Pg.749]    [Pg.170]    [Pg.171]    [Pg.181]    [Pg.187]    [Pg.60]    [Pg.278]    [Pg.248]    [Pg.1142]    [Pg.80]    [Pg.121]    [Pg.134]    [Pg.139]    [Pg.139]    [Pg.407]    [Pg.434]    [Pg.443]    [Pg.132]    [Pg.99]    [Pg.598]    [Pg.276]    [Pg.3]    [Pg.189]    [Pg.187]   
See also in sourсe #XX -- [ Pg.10 ]




SEARCH



Flavor Formation via the Maillard Reaction

Flavor Maillard reactions

Flavor reactions

Maillard

Maillard flavors

Maillard reactions

Pathways for Flavor Formation via the Maillard Reaction

© 2024 chempedia.info