Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Magnesium and water

Metallic magnesium and water [7732-18-5] react. Under normal atmospheric conditions or in pure or chloride-free water of high pH, the reaction is suppressed by the formation of an insoluble magnesium hydroxide [1309-42-8] film. [Pg.314]

A drum of graphite with magnesium and uranium, stored underwater with a 6mm diameter relief hole, burst and scattered its contents. This was attrributed to insufficient venting of hydrogen evolved by reaction of magnesium and water [1], If the uranium was present as metal, it seems likely to have been an even more potent source of hydrogen [2],... [Pg.1763]

Write and balance the equation for the formation of magnesium hydroxide and hydrogen from magnesium and water. Determine the possible mole ratios. [Pg.877]

Thiazides cause sodium, chloride, potassium, magnesium, and water excretion (reabsorbs calcium) by affecting the distal convoluted renal tubule beyond the loop of Henle. Thiazides are not effective for immediate diuresis. When administering thiazides ... [Pg.301]

The flameless ration heater uses a heat-releasing chemical reaction similar to that of magnesium and water in forming magnesium hydroxide,... [Pg.221]

Investigating the effect of temperature on reaction rate magnesium and water... [Pg.157]

The reaction between magnesium and water provides a simple illustration of the effect temperature has on reaction rate. The equation for the reaction is ... [Pg.157]

Determine the products and write a balanced equation for the reaction of solid magnesium and water. [Pg.281]

Other methods for analyzing combustion products can be substituted for chromatography. Gravimetry can be used, for example, after a series of absorption on different beds, as in the case of water absorption in magnesium perchlorate or CO2 in soda lime infra-red spectrometry can be used for the detection of CO2 and water. [Pg.29]

This produces sufficient concentrations of magnesium and calcium ions to render the water hard. The above reaction is readily reversed by boiling the water when the magnesium and calcium ions responsible for the hardness are removed as the insoluble carbonate. [Pg.132]

Magnesium and calcium hydrogencarbonates are known in solution and are responsible for temporary hardness in water. [Pg.184]

Bromides of sodium, potassium, magnesium and calcium occur in sea water (about 0.07 % bromine) but the Dead Sea contains much more (5% bromine). Salt deposits (e.g. at Stassfurt) also contain these bromides. Silver bromide, AgBr, is found in South America. [Pg.318]

The chromates of the alkali metals and of magnesium and calcium are soluble in water the other chromates are insoluble. The chromate ion is yellow, but some insoluble chromates are red (for example silver chromate, Ag2Cr04). Chromates are often isomorph-ous with sulphates, which suggests that the chromate ion, CrO has a tetrahedral structure similar to that of the sulphate ion, SO4 Chromates may be prepared by oxidising chromium(III) salts the oxidation can be carried out by fusion with sodium peroxide, or by adding sodium peroxide to a solution of the chromium(IIl) salt. The use of sodium peroxide ensures an alkaline solution otherwise, under acid conditions, the chromate ion is converted into the orange-coloured dichromate ion ... [Pg.378]

The method of hydrolysis depends on the nature of the product. It is usually sufficient to add dilute sulphuric acid to the ethereal solution and to shake thoroughly, when the magnesium enters the aqueous solution, whilst the organic compound remains in the ether. Alternatively, however, the ethereal solution may be poured on to ice and water, and then treated with dilute sulphuric acid. Should the product be affected by this acid, the hydrolysis can be carried out with an aqueous solution of ammonium chloride. In the following examples the hydrolysis is usually shown as a simple double decomposition... [Pg.281]

Reaction (1) usually proceeds readily provided the magnesium is activated with iodine and the water content does not exceed one per cent. Subsequent interaction between the magnesium ethoxide and water gives the highly insoluble magnesium hydroxide only a slight excess of magnesium is therefore necessary. [Pg.167]

Dichlorobutane. Place 22-5g. of redistilled 1 4-butanediol and 3 ml. of dry pyridine in a 500 ml. three necked flask fitted with a reflux condenser, mechanical stirrer and thermometer. Immerse the flask in an ice bath. Add 116 g. (71 ml.) of redistilled thionyl chloride dropwise fix>m a dropping funnel (inserted into the top of the condenser) to the vigorously stirred mixture at such a rate that the temperature remains at 5-10°. When the addition is complete, remove the ice bath, keep the mixture overnight, and then reflux for 3 hours. Cool, add ice water cautiously and extract with ether. Wash the ethereal extract successively with 10 per cent sodium bicarbonate solution and water, dry with anhydrous magnesium sulphate and distil. Collect the 1 4-dichloro-butane at 55-5-56-5°/14 mm. the yield is 35 g. The b.p. under atmospheric pressure is 154 155°. [Pg.275]

Dibromobutane from 1 4 butanediol). In a 500 ml. threenecked flask fltted with a stirrer, reflux condenser and dropping funnel, place 154 g. (105 ml.) of 48 per cent, hydrobromic acid. Cool the flask in an ice bath. Add slowly, with stirring, 130 g. (71 ml.) of concentrated sulphuric acid. To the resulting ice-cold solution add 30 g. of redistilled 1 4-butanediol dropwise. Leave the reaction mixture to stand for 24 hours heat for 3 hours on a steam bath. The reaction mixture separates into two layers. Separate the lower layer, wash it successively with water, 10 per cent, sodium carbonate solution and water, and then dry with anhydrous magnesium sulphate. Distil and collect the 1 4-dibromo-butane at 83-84°/12 mm. The yield is 55 g. [Pg.280]

The distillate contains alcohol, toluene and water, and may be dried with anhydrous potassium carbonate and used again for esterification after the addition of the necessary quantity of alcohol alternatively, the toluene may be recovered by washing with water, drying with anhydrous calcium chloride or anhydrous magnesium sulphate, and distiUing. [Pg.386]

The first portion of the steam distillate consists almost entirely of tetrachloroethane and water. The solvent is recovered by separating the organic layer, drying with anhydrous calcium chloride or magnesium sulphate and distilling. [Pg.702]

Mix 31 g. (29-5 ml.) of benzyl alcohol (Section IV, 123 and Section IV,200) and 45 g. (43 ml.) of glacial acetic acid in a 500 ml. round-bottomed flask introduce 1 ml. of concentrated sulphuric acid and a few fragments of porous pot. Attach a reflux condenser to the flask and boil the mixture gently for 9 hours. Pour the reaction mixture into about 200 ml. of water contained in a separatory funnel, add 10 ml. of carbon tetrachloride (to eliminate emulsion formation owing to the slight difference in density of the ester and water, compare Methyl Benzoate, Section IV,176) and shake. Separate the lower layer (solution of benzyl acetate in carbon tetrachloride) and discard the upper aqueous layer. Return the lower layer to the funnel, and wash it successively with water, concentrated sodium bicarbonate solution (until effervescence ceases) and water. Dry over 5 g. of anhydrous magnesium sulphate, and distil under normal pressure (Fig. II, 13, 2) with the aid of an air bath (Fig. II, 5, 3). Collect the benzyl acetate a (colourless liquid) at 213-215°. The yield is 16 g. [Pg.783]


See other pages where Magnesium and water is mentioned: [Pg.91]    [Pg.91]    [Pg.151]    [Pg.1845]    [Pg.46]    [Pg.67]    [Pg.221]    [Pg.295]    [Pg.400]    [Pg.91]    [Pg.91]    [Pg.151]    [Pg.1845]    [Pg.46]    [Pg.67]    [Pg.221]    [Pg.295]    [Pg.400]    [Pg.413]    [Pg.45]    [Pg.275]    [Pg.141]    [Pg.237]    [Pg.278]    [Pg.305]    [Pg.360]    [Pg.469]    [Pg.512]    [Pg.514]    [Pg.535]    [Pg.601]    [Pg.671]    [Pg.694]    [Pg.735]    [Pg.781]    [Pg.782]   
See also in sourсe #XX -- [ Pg.67 ]




SEARCH



Magnesium and

Magnesium oxide and water

© 2024 chempedia.info