Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lyases citrate lyase

CHOLINE ACETYLTRANSFERASE CHOLOYL-CoA SYNTHETASE CITRAMALYL-CoA LYASE CITRATE LYASE... [Pg.732]

Finally, citrate can be exported from the mitochondria and then broken down by ATP-citrate lyase to yield oxaloacetate and acetyl-CoA, a precursor of fatty acids (Figure 20.23). Oxaloacetate produced in this reaction is rapidly reduced to malate, which can then be processed in either of two ways it may be transported into mitochondria, where it is reoxidized to oxaloacetate, or it may be oxidatively decarboxylated to pyruvate by malic enzyme, with subse-... [Pg.662]

Ketone body synthesis occurs only in the mitochondrial matrix. The reactions responsible for the formation of ketone bodies are shown in Figure 24.28. The first reaction—the condensation of two molecules of acetyl-CoA to form acetoacetyl-CoA—is catalyzed by thiolase, which is also known as acetoacetyl-CoA thiolase or acetyl-CoA acetyltransferase. This is the same enzyme that carries out the thiolase reaction in /3-oxidation, but here it runs in reverse. The second reaction adds another molecule of acetyl-CoA to give (i-hydroxy-(i-methyl-glutaryl-CoA, commonly abbreviated HMG-CoA. These two mitochondrial matrix reactions are analogous to the first two steps in cholesterol biosynthesis, a cytosolic process, as we shall see in Chapter 25. HMG-CoA is converted to acetoacetate and acetyl-CoA by the action of HMG-CoA lyase in a mixed aldol-Claisen ester cleavage reaction. This reaction is mechanistically similar to the reverse of the citrate synthase reaction in the TCA cycle. A membrane-bound enzyme, /3-hydroxybutyrate dehydrogenase, then can reduce acetoacetate to /3-hydroxybutyrate. [Pg.798]

The acetyl-CoA derived from amino acid degradation is normally insufficient for fatty acid biosynthesis, and the acetyl-CoA produced by pyruvate dehydrogenase and by fatty acid oxidation cannot cross the mitochondrial membrane to participate directly in fatty acid synthesis. Instead, acetyl-CoA is linked with oxaloacetate to form citrate, which is transported from the mitochondrial matrix to the cytosol (Figure 25.1). Here it can be converted back into acetyl-CoA and oxaloacetate by ATP-citrate lyase. In this manner, mitochondrial acetyl-CoA becomes the substrate for cytosolic fatty acid synthesis. (Oxaloacetate returns to the mitochondria in the form of either pyruvate or malate, which is then reconverted to acetyl-CoA and oxaloacetate, respectively.)... [Pg.804]

Histidine phosphatases and aspartate phosphatases are well established in lower organisms, mainly in bacteria and in context with two-component-systems . Reversible phosphorylation of histidine residues in vertebrates is in its infancy. The first protein histidine phosphatase (PHP) from mammalian origin was identified just recently. The soluble 14 kD protein does not resemble any of the other phosphatases. ATP-citrate lyase and the (3-subunit of heterotrimeric GTP-binding proteins are substrates of PHP thus touching both, metabolic pathways and signal transduction [4]. [Pg.1014]

Cisplatin — see Platinum, cw-dichlorodiammine-Cis-transisomerization, 1, 467 Citrate lyase activation... [Pg.105]

Pymvate dehydrogenase is a mitochondrial enzyme, and fatty acid synthesis is a cytosohc pathway, but the mitochondrial membrane is impermeable to acetyl-CoA. Acetyl-CoA is made available in the cytosol from citrate synthesized in the mitochondrion, transported into the cytosol and cleaved in a reaction catalyzed by ATP-citrate lyase. [Pg.134]

Both dehydrogenases of the pentose phosphate pathway can be classified as adaptive enzymes, since they increase in activity in the well-fed animal and when insulin is given to a diabetic animal. Activity is low in diabetes or starvation. Malic enzyme and ATP-citrate lyase behave similarly, indicating that these two enzymes are involved in lipogenesis rather than gluconeogenesis (Chapter 21). [Pg.157]

Production of Malonyl-CoA for the Fatty Acid Biosynthesis. Acetyl-CoA serves as a substrate in the production of malonyl-CoA. There are several routes by which acetyl-CoA is supplied to die cytoplasm. One route is the transfer of acetyl residues from the mitochondrial matrix across the mitochondrial membrane into the cyto-plasm. This process resembles a fatty acid transport and is likewise effected with the participation of carnitine and the enzyme acetyl-CoA-camitine transferase. Another route is the production of acetyl-CoA from citrate. Citrate is delivered from the mitochondria and undergoes cleavage in the cytoplasm by the action of the enzyme ATP-citrate lyase ... [Pg.200]

Calculating energy costs for the synthesis of a CK, fatty acid from acetyl-CoA is not as simple as you might first think. The major complication is that acetyl-CoA is made in the mitochondria, but fatty acid synthesis occurs in the cytosol—acetyl-CoA can t cross the mitochondrial membrane. Acetyl-CoA gets out of the mitochondria disguised as citrate. The acetyl-CoA is condensed with oxaloacetate to give citrate, and the citrate leaves the mitochondria. In the cytosol, the citrate is cleaved by an ATP-dependent citrate lyase into acetyl-CoA and oxaloacetate ... [Pg.170]

Fatland BL, Ke J, Anderson MD, Mentzen WI, Cui LW, Allred CC, Johnston JL, Nikolau BJ and Wurtele ES. 2004. Molecular characterization of a heteromeric ATP-citrate lyase that generates cytosolic acetyl-Coenzyme A in Arabidopsis. Plant Plsy 130 740-756. [Pg.150]

Fig. 9. Pathway duplication the methyl citrate cycle and the glyoxylate shunt. A pathway for acetate metabolism in E. coli that uses the glyoxylate shunt is depicted on the right. Part of the methyl citrate cycle, a pathway for propionate metabolism, is depicted on the left. The pathways are analogous furthermore, three of the four steps are catalyzed by homologous enzymes. PrpE (propionyl-CoA synthase) is homologous to AcsA (acetyl-CoA synthase). PrpC (2-methyl-citrate synthase) is homologous to GltA (citrate synthase). PrpB (2-methyl-isocitrate lyase) is homologous to AceA (isocitrate lyase). The third step in the methyl citrate cycle has been suggested to be catalyzed by PrpD the second half of the reaction (the hydration) can be catalyzed by aconitase. Fig. 9. Pathway duplication the methyl citrate cycle and the glyoxylate shunt. A pathway for acetate metabolism in E. coli that uses the glyoxylate shunt is depicted on the right. Part of the methyl citrate cycle, a pathway for propionate metabolism, is depicted on the left. The pathways are analogous furthermore, three of the four steps are catalyzed by homologous enzymes. PrpE (propionyl-CoA synthase) is homologous to AcsA (acetyl-CoA synthase). PrpC (2-methyl-citrate synthase) is homologous to GltA (citrate synthase). PrpB (2-methyl-isocitrate lyase) is homologous to AceA (isocitrate lyase). The third step in the methyl citrate cycle has been suggested to be catalyzed by PrpD the second half of the reaction (the hydration) can be catalyzed by aconitase.
In common with cholesterol synthesis described in the next section, fatty acids are derived from glucose-derived acetyl-CoA. In the fed state when glucose is plentiful and more than sufficient acetyl-CoA is available to supply the TCA cycle, carbon atoms are transported out of the mitochondrion as citrate (Figure 6.8). Once in the cytosol, citrate lyase forms acetyl-CoA and oxaloacetate (OAA) from the citrate. The OAA cannot re-enter the mitochondrion but is converted into malate by cytosolic malate dehydrogenase (cMDH) and then back into OAA by mitochondrial MDH (mMDH) Acetyl-CoA remains in the cytosol and is available for fatty acid synthesis. [Pg.180]

In the cytoplasm, citrate lyase splits citrate back into acetyl CoA and oxaloacetate. The oxaloacetate returns to the mitochondria to transport additional acetyl CoA. This process is shown in Figure I-15-I and includes the important malic enzyme. This reaction represents an additional source of cytoplasmic NAD PH in liver and adipose tissue, supplementing that from the HMP shunt. [Pg.208]

Citrate is transported across the mitochondrial membrane by a specific carrier. In the cytosol, acetyl-CoA is reformed in a reaction catalysed by ATP citrate lyase (Figure 11.3). This reaction involves the hydrolysis of ATP ... [Pg.224]

Figure 11.3 Mechanism of transfer of acetyl-CoA out of the mitochondrion. In the mitochondrion, acetyl-CoA reacts with oxaloacetate to form citrate, which is transported across the mitochondrial inner membrane. In the cytosol, citrate is split to re-form citrate and oxaloacetate, catalysed by citrate lyase. It has been shown that inhibition of citrate lyase inhibits fatty acid synthesis. Figure 11.3 Mechanism of transfer of acetyl-CoA out of the mitochondrion. In the mitochondrion, acetyl-CoA reacts with oxaloacetate to form citrate, which is transported across the mitochondrial inner membrane. In the cytosol, citrate is split to re-form citrate and oxaloacetate, catalysed by citrate lyase. It has been shown that inhibition of citrate lyase inhibits fatty acid synthesis.
Groot.P.H.E.. Synthesis of novel thiol-containing citric acid analogues. Kinetic evaluation of these and other potential active-site-directed and mechanism-based inhibitors of ATP citrate lyase, J.Med.Chem., 38(3), 1995, 537-543... [Pg.264]

Aconitase [citrate(isocitrate) hydro-lyase, EC 4.2.1.3] is the second enzyme of the citric acid cycle, which plays a central role in metabolism for all aerobic organisms. This enzyme catalyzes a dehydration-rehydration reaction interconverting citrate and 2R,3S-isocitrate via the allylic intermediate ds-aconitate. [Pg.343]

The tricarboxylic acid cycle not only takes up acetyl CoA from fatty acid degradation, but also supplies the material for the biosynthesis of fatty acids and isoprenoids. Acetyl CoA, which is formed in the matrix space of mitochondria by pyruvate dehydrogenase (see p. 134), is not capable of passing through the inner mitochondrial membrane. The acetyl residue is therefore condensed with oxaloacetate by mitochondrial citrate synthase to form citrate. This then leaves the mitochondria by antiport with malate (right see p. 212). In the cytoplasm, it is cleaved again by ATP-dependent citrate lyase [4] into acetyl-CoA and oxaloacetate. The oxaloacetate formed is reduced by a cytoplasmic malate dehydrogenase to malate [2], which then returns to the mitochondrion via the antiport already mentioned. Alternatively, the malate can be oxidized by malic enzyme" [5], with decarboxylation, to pyruvate. The NADPH+H formed in this process is also used for fatty acid biosynthesis. [Pg.138]

Fructose bisphosphate aldolase— aldolase Hydroxymethylglutaryl-CoA lyase Hydroxymethylglutaryl-CoA synthase Citrate synthase ATP-citrate lyase... [Pg.428]

This [4Fe-4S] cluster-containing enzyme [EC 4.2.1.3], also known as citrate hydro-lyase and aconitate hydra-tase, will act on citrate to generate ds-aconitate ((Z)-prop-l-ene 1,2,3-tricarboxylate) and water. The enzyme will also catalyze the conversion of isocitrate into ds-aconitate. [Pg.13]

This enzyme [EC 4.1.3.8], also known as ATP-citrate (pro-S-)-lyase and citrate cleavage enzyme, catalyzes the reaction of citrate with ATP and coenzyme A to yield oxaloacetate, acetyl-CoA, ADP, and orthophosphate. [Pg.72]

This enzyme [EC 4.1.3.6] (also known as citrate (pro-35)-lyase, citrase, citratase, citritase, citridesmolase, and citrate aldolase) catalyzes the conversion of citrate to acetate and oxaloacetate. Citrate lyase can be dissociated into subunits, two components of which are identical with citrate CoA-transferase [EC 2.8.3.10] and citryl-CoA lyase [EC 4.1.3.34]. [Pg.152]

Acetyl-CoA p-Nitroaniline Disappearance Arylamine Acetyltransferase Acetyl-CoA Synthetase, ATP-Citrate Lyase" ... [Pg.173]

ATP CITRATE LYASE ATP GLUCOSE-L-PHOSPHATE ADENYL-YLTRANSFERASE... [Pg.725]

ARYLAMINE ACETYLTRANSFERASE ATP CITRATE LYASE BENZOATE-CoA LIGASE... [Pg.732]

In the past decade, a few examples of benzoannulated carbazole ring systems were found in nature as marine products. In 1993, Chan et al. reported a novel marine benzocarbazole alkaloid, purpurone (281) from the marine sponge lotrochota sp. in its racemic form. Purpurone, as indicated by its name, is purple in color. This represents the first example of a benzocarbazole alkaloid with a biphenylene quinone methide functionality. The isolate showed ATP-citrate lyase (ACL) inhibitory activity (247). [Pg.108]


See other pages where Lyases citrate lyase is mentioned: [Pg.414]    [Pg.39]    [Pg.670]    [Pg.804]    [Pg.78]    [Pg.156]    [Pg.177]    [Pg.216]    [Pg.59]    [Pg.543]    [Pg.86]    [Pg.365]    [Pg.262]    [Pg.264]    [Pg.139]    [Pg.72]    [Pg.152]    [Pg.724]    [Pg.167]   
See also in sourсe #XX -- [ Pg.1516 ]




SEARCH



Citrate lyase

Lyase

Lyases

© 2024 chempedia.info