Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lowest unoccupied molecular orbit

Knowledge of molecular orbitals, particularly of the HOMO Highest Occupied Molecular Orbital) and the LUMO Lowest Unoccupied Molecular Orbital), imparts a better understanding of reactions Figure 2-125b). Different colors e.g., red and blue) are used to distinguish between the parts of the orbital that have opposite signs of the wavefunction. [Pg.135]

In view of this, early quantum mechanical approximations still merit interest, as they can provide quantitative data that can be correlated with observations on chemical reactivity. One of the most successful methods for explaining the course of chemical reactions is frontier molecular orbital (FMO) theory [5]. The course of a chemical reaction is rationali2ed on the basis of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), the frontier orbitals. Both the energy and the orbital coefficients of the HOMO and LUMO of the reactants are taken into account. [Pg.179]

If the mini her of electrons, N, is even, yon can haven dosed shell (as shown ) where the occupied orbitals each contain two electron s. For an odd n nrn her of electron s, at least on e orbital rn ust be singly occupied. In the example, three orbitals are occupied by-electron s and two orbitals arc nn occupied. Th e h ighest occupied nioleciilar orbital (HOMO is t[r), and the lowest unoccupied molecular orbital (LUMO) is The example above is a singlet, a state oh total spin S=0. Exciting one electron from the HOMO to the LUMO orbital would give one ol the I ollowing excited states ... [Pg.221]

When you request an orbital, yon can use the cardinal number of the orbital (ordered by energy and starting with number=l) or an offset from either the highest occupied molecular orbital (HOMO) or the lowest unoccupied molecular orbital (LL MO). Offset from the HOMO are negative and from the LUMO are positive. Often these frontier orbitals are the ones of most chemical interest. [Pg.244]

I he electron density distribution of individual molecular orbitals may also be determined and plotted. The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) are often of particular interest as these are the orbitals most cimimonly involved in chemical reactions. As an illustration, the HOMO and LUMO for Jonnamide are displayed in Figures 2.12 and 2.13 (colour plate section) as surface pictures. [Pg.99]

Highest occupied molecular orbital Intermediate neglect of differential overlap Linear combination of atomic orbitals Local density approximation Local spin density functional theory Lowest unoccupied molecular orbital Many-body perturbation theory Modified INDO version 3 Modified neglect of diatomic overlap Molecular orbital Moller-Plesset... [Pg.124]

Considering Highest Occupied Molecular Orbital and Lowest Unoccupied Molecular Orbital (providing that solvation energies are equal) 44 might be.a better reducer than 43 (Schemes 65-68). [Pg.73]

Frontier orbitals (Section 10 14) Orbitals involved in a chem ical reaction usually the highest occupied molecular orbital of one reactant and the lowest unoccupied molecular orbital of the other... [Pg.1284]

LUIVIO (Section 10 13) The orbital of lowest energy that con tains none of a molecule s electrons the lowest unoccupied molecular orbital... [Pg.1288]

Thermodynamic properties such as heats of reaction and heats of formation can be computed mote rehably by ab initio theory than by semiempirical MO methods (55). However, the Hterature of the method appropriate to the study should be carefully checked before a technique is selected. Finally, the role of computer graphics in evaluating quantum mechanical properties should not be overlooked. As seen in Figures 2—6, significant information can be conveyed with stick models or various surfaces with charge properties mapped onto them. Additionally, information about orbitals, such as the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), which ate important sites of reactivity in electrophilic and nucleophilic reactions, can be plotted readily. Figure 7 shows representations of the HOMO and LUMO, respectively, for the antiulcer dmg Zantac. [Pg.163]

Fig. 7. Graphical representations of (a) the Highest Occupied Molecular Orbital (HOMO) and (b) the Lowest Unoccupied Molecular Orbital (LUMO) for ranitidine. It is possible, in the ordinarily visible color-coded data not shown here, to distinguish the strong localization (a) of the HOMO to the sulfur atom and adjacent nitroethyleneamine fragment and the contrasting localization (b) of the LUMO to the nitroethylenearnine fragment. Neither the LUMO not HOMO appear to have contributions from the dimethylaminomethyl-suhstitiited furan. Fig. 7. Graphical representations of (a) the Highest Occupied Molecular Orbital (HOMO) and (b) the Lowest Unoccupied Molecular Orbital (LUMO) for ranitidine. It is possible, in the ordinarily visible color-coded data not shown here, to distinguish the strong localization (a) of the HOMO to the sulfur atom and adjacent nitroethyleneamine fragment and the contrasting localization (b) of the LUMO to the nitroethylenearnine fragment. Neither the LUMO not HOMO appear to have contributions from the dimethylaminomethyl-suhstitiited furan.
Aromatic Radical Anions. Many aromatic hydrocarbons react with alkaU metals in polar aprotic solvents to form stable solutions of the corresponding radical anions as shown in equation 8 (3,20). These solutions can be analyzed by uv-visible spectroscopy and stored for further use. The unpaired electron is added to the lowest unoccupied molecular orbital of the aromatic hydrocarbon and a... [Pg.237]

Chemical Properties. The chemistry of ketenes is dominated by the strongly electrophilic j/)-hybridi2ed carbon atom and alow energy lowest unoccupied molecular orbital (LUMO). Therefore, ketenes are especially prone to nucleophilic attack at Cl and to [2 + 2] cycloadditions. Less frequent reactions are the so-called ketene iasertion, a special case of addition to substances with strongly polarized or polarizable single bonds (37), and the addition of electrophiles at C2. For a review of addition reactions of ketenes see Reference 8. [Pg.473]

Dinitrogen has a dissociation energy of 941 kj/mol (225 kcal/mol) and an ionisation potential of 15.6 eV. Both values indicate that it is difficult to either cleave or oxidize N2. For reduction, electrons must be added to the lowest unoccupied molecular orbital of N2 at —7 eV. This occurs only in the presence of highly electropositive metals such as lithium. However, lithium also reacts with water. Thus, such highly energetic interactions ate unlikely to occur in the aqueous environment of the natural enzymic system. Even so, highly reducing systems have achieved some success in N2 reduction even in aqueous solvents. [Pg.91]

It is now possible to "see" the spatial nature of molecular orbitals (10). This information has always been available in the voluminous output from quantum mechanics programs, but it can be discerned much more rapidly when presented in visual form. Chemical reactivity is often governed by the nature of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). Spectroscopic phenomena usually depend on the HOMO and higher energy unoccupied states, all of which can be displayed and examined in detail. [Pg.93]

The most extensive calculations of the electronic structure of fullerenes so far have been done for Ceo- Representative results for the energy levels of the free Ceo molecule are shown in Fig. 5(a) [60]. Because of the molecular nature of solid C o, the electronic structure for the solid phase is expected to be closely related to that of the free molecule [61]. An LDA calculation for the crystalline phase is shown in Fig. 5(b) for the energy bands derived from the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) for Cgo, and the band gap between the LUMO and HOMO-derived energy bands is shown on the figure. The LDA calculations are one-electron treatments which tend to underestimate the actual bandgap. Nevertheless, such calculations are widely used in the fullerene literature to provide physical insights about many of the physical properties. [Pg.47]

Further examination of Table 1.10 reveals that the lowest unoccupied molecular orbital, i/ 4, is a pure p orbital, localized on carbon, since the coefficients are zero for all but the 2p orbital. The MO picture is in agreement with the usual qualitative hybridization picture for the methyl cation. [Pg.27]

FIGURE 13.38 The Tr Tr transition in ds,trans-, 3-cyclooctadiene involves excitation of an electron from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO). [Pg.566]


See other pages where Lowest unoccupied molecular orbit is mentioned: [Pg.182]    [Pg.951]    [Pg.393]    [Pg.233]    [Pg.132]    [Pg.307]    [Pg.4]    [Pg.262]    [Pg.565]    [Pg.10]    [Pg.233]    [Pg.240]    [Pg.244]    [Pg.237]    [Pg.74]    [Pg.449]    [Pg.40]    [Pg.40]    [Pg.80]    [Pg.169]    [Pg.797]    [Pg.840]    [Pg.412]    [Pg.565]   
See also in sourсe #XX -- [ Pg.489 ]

See also in sourсe #XX -- [ Pg.79 , Pg.112 ]




SEARCH



Lowest Unoccupied Molecular Orbital

Lowest unoccupied molecular

Molecular orbitals lowest unoccupied

Orbital, unoccupied

Orbitals lowest unoccupied

Orbitals unoccupied

Unoccupied molecular orbitals

© 2024 chempedia.info