Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lower critical transition temperature

Reactive compatibilization can also be accomplished by co-vulcanization at the interface of the component particles resulting in obliteration of phase boundary. For example, when cA-polybutadiene is blended with SBR (23.5% styrene), the two glass transition temperatures merge into one after vulcanization. Co-vulcanization may take place in two steps, namely generation of a block or graft copolymer during vulcanization at the phase interface and compatibilization of the components by thickening of the interface. However, this can only happen if the temperature of co-vulcanization is above the order-disorder transition and is between the upper and lower critical solution temperature (LCST) of the blend [20]. [Pg.301]

The phase transition temperatures (lower critical solution temperature, LCST) of the pol5miers were obtained from the change in the transmittance of their aqueous solutions (Figure 1). The aqueous solution of the obtained pol5uner was prepared and its transmittance at 500 nm was monitored with increase in the ambient temperature. Both of poly-NIPA and poly-NEA showed a sudden decrease in the transmittance at 37.5 and 69.2 °C, respectively. The result shown in Figure 1 clearly suggests the thermosensitivity of the pol5mers, and the obtained LCST values are close to those reported for poly-NIPA (34.8 °C) [8] and poly-NEA (72 °C) [9]. [Pg.302]

Figure 8 Schematic for the transition of lower critical solution temperature polymer. (From Ref. 29.)... Figure 8 Schematic for the transition of lower critical solution temperature polymer. (From Ref. 29.)...
Poly(A-isopropyl acrylamide) (PNIPAAm) is the most extensively studied temperature-sensitive polymer [10-20]. Crosslinked PNIPAAm exhibits drastic swelling transition at its lower critical solution temperature... [Pg.162]

Poly(N-isopropylacrylamide) (polyNIPAAM), formed by a free radical polymerization of N-isopropylacrylamide, is a water soluble, temperature sensitive polymer. In aqueous solution, it exhibits a lower critical solution temperature (LCST) in the range of 30-35 C depending on the concentration and the chain length of the polymer. Thus, as the solution temperature is raised above the LCST, the polymer undergoes a reversible phase transition characterized by the separation of a solid phase which redissolves when the solution temperature is lowered below the LCST. Its physicochemical properties have been investigated by several laboratories (1-3). [Pg.245]

Thus, the PEO segment actually becomes hydrophobic at higher temperatures. This temperature-dependent change converts the amphiphilic block copolymer to a water-insoluble hydrophobic polymer (Topp et al. 1997 Chung et al. 2000). The temperature at which the polymer exhibits this transition is called its lower critical solution temperature (LCST). In addition to PEO, substituted poly(A -isopropyl acrylamide) (PNIPAM Chart 2.1) exhibits temperature sensitivity, where the LCST can be tuned by varying the alkyl fimctionahty. The guest encapsulation combined with the temperature-sensitive precipitation of the polymers has been exploited to sequester and separate guest molecules from aqueous solutions (Fig. 2.4). [Pg.14]

Figure 19.1 shows the temperature-dependent volume-phase transitions of NIPA-based hydrogels. It is suggested that formation of a complex between bioactive molecules and functional groups of hydrogels is responsible for immobilization of the former. The lower critical solution temperature (LCST) of PNIPA can be tuned to the required value by introducing hydrophobic or hydrophilic fragments. [Pg.180]

At present, we believe that the jump transitions observed in many of the gels studied here represent first order phase transitions. If this is the case, then the gels studied here are among the first found so far in which a first order phase transition occurs near room temperature in pure aqueous solvent with substantial added salt. Early studies by Tanaka s group with poly(acrylamide) based gels required that hydrophobic solvents such as acetone be added for a discontinuous phase transition to be observed near room temperature [6-10]. The more recently studied gels based on poly(n-isopropylacrylamide) [11, 12] and other lower critical solution temperature polymers show discrete phase transitions in water with no salt [11], but the swelling transitions become continuous when moderate amounts of salt are added [12],... [Pg.239]

Figure 2 illustrates the temperature dependence of the swelling degree as a function of precursor polymer type. Methylcellulose (MC), hydroxypropyl-methylcellulose, type E (HPMC-E) and hydroxypropylmethylcellulose, type K (HPMC-K) gels have comparable effective crosslink densities of about 2 x 10 5 mol/cm3 (as determined from uniaxial compression testing), while the crosslink density of the hydroxypropylcellulose (HPC) gel is about half this [52]. The transition temperature for each gel is within several degrees of the precursor polymer lower critical solution temperature (LCST), except for the MC gel, which has a transition temperature 9 °C higher than the LCST. The sharpness of the transition was about 3%/°C, except for the HPC gel transition, which was much sharper - about 8%/°C. [Pg.101]

AA AAm Con A DSS DSS-gel LCST MAPTAC MBA MP MP-gel NIPA ONPG PVMA SSPG Tc TMED acrylic acid acrylamide concanavalin A dextran sulfate sodium gel containing Con A/DSS complex lower critical solution temperature [(methacrylamide)propyl]trimethylammonium chloride /V,/V -methylenebis(acrylamide) a-methyl-D-mannopyranoside gel containing Con A/MP complex /V-isopropylacrylamide O-nitrophenyl-P-D-galactopyranoside poly(vinyl methyl ether) stimulus-sensitive polymer gel transition temperature /V,/V,/V, /V -tetramethylethylenediamine... [Pg.158]

In a blend of immiscible homopolymers, macrophase separation is favoured on decreasing the temperature in a blend with an upper critical solution temperature (UCST) or on increasing the temperature in a blend with a lower critical solution temperature (LCST). Addition of a block copolymer leads to competition between this macrophase separation and microphase separation of the copolymer. From a practical viewpoint, addition of a block copolymer can be used to suppress phase separation or to compatibilize the homopolymers. Indeed, this is one of the main applications of block copolymers. The compatibilization results from the reduction of interfacial tension that accompanies the segregation of block copolymers to the interface. From a more fundamental viewpoint, the competing effects of macrophase and microphase separation lead to a rich critical phenomenology. In addition to the ordinary critical points of macrophase separation, tricritical points exist where critical lines for the ternary system meet. A Lifshitz point is defined along the line of critical transitions, at the crossover between regimes of macrophase separation and microphase separation. This critical behaviour is discussed in more depth in Chapter 6. [Pg.9]

Fig. 8 Schematic of different chain conformations and the coil-to-globule transition of NIPAM-co-VP copolymers prepared at two temperatures, respectively, lower and higher than the lower critical solution temperature of PNIPAM homopolymer [56]... Fig. 8 Schematic of different chain conformations and the coil-to-globule transition of NIPAM-co-VP copolymers prepared at two temperatures, respectively, lower and higher than the lower critical solution temperature of PNIPAM homopolymer [56]...
Affinity chromatography of streptavidin was performed on a PET chip. The microchannel was first filled with the dual-modified latex beads (as shown in Figure 6.3). The biotinylated beads were surface-modified with a temperature-sensitive polymer, poly(N-isopropylacrylamide (PNIPAAm, 11 kDa). When the temperature was raised above the lower critical solution temperature (LCST) of PNIPAAm, the beads aggregated and adhered to the channel wall, because of a hydrophilic-to-hydrophobic phase transition. Then streptavidin from a sample solution was captured by these adhered biotinylated beads. Thereafter, when the temperature was reduced below the LCST, the beads dissociated and eluted from the channel wall together with the captured streptavidin [203],... [Pg.175]

Poly(N-isopropylacrylamide) (PNIPAM) is the most studied thermosensitive polymer in aqueous media. It is soluble in water at low temperatures but becomes insoluble when the temperature is increased above a certain temperature ( 32 °C) (lower critical solution temperature), which is related to the coil-to-globule transition [64, 65]. In the case of a polymer network, a volume change occurs reversibly within a narrow temperature range. The properties of such microgels can be varied to a great extent by the introduction... [Pg.123]

Lower critical solution temperature (LCST), 211 Lower glass transition, 171 Lustre, 317 and gloss, 876... [Pg.996]


See other pages where Lower critical transition temperature is mentioned: [Pg.110]    [Pg.580]    [Pg.85]    [Pg.110]    [Pg.580]    [Pg.85]    [Pg.75]    [Pg.26]    [Pg.634]    [Pg.26]    [Pg.128]    [Pg.37]    [Pg.208]    [Pg.606]    [Pg.625]    [Pg.299]    [Pg.105]    [Pg.181]    [Pg.17]    [Pg.240]    [Pg.105]    [Pg.99]    [Pg.541]    [Pg.555]    [Pg.33]    [Pg.145]    [Pg.388]    [Pg.302]    [Pg.433]    [Pg.481]    [Pg.84]    [Pg.5]    [Pg.131]    [Pg.194]    [Pg.335]    [Pg.344]   


SEARCH



Critical lower

Critical temperatur

Critical temperature lower

Lower critical transition temperature behaviour

Lower temperature transitions

Temperature critical

© 2024 chempedia.info