Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquids, diffraction

An X-ray liquid diffraction experiment on a solution corresponding to the stoichiometry of the trimethylamine decahydrate [807], 4(CH3)3N 40H2O, provided the radial distribution function shown in Fig. 21.14, which could be fitted equally well with models based on the hydrate crystal structure or on the ice I structure with interstitial amine molecules. This result clearly illustrates the insensibility of X-ray liquid diffraction data alone for distinguishing between competing models for aqueous solutions which have similar first- and second-order coordinations. [Pg.448]

The linear H-bond imposes a very open tetrahedral structure on the water molecules throughout the liquid. Diffraction experiments show each water molecule to be tetrahedraUy surrounded by about four other water molecules at a distance of 0.28 nm with a next layer at... [Pg.525]

The actual structure at a vapor-liquid interface can be probed with x-rays. Rice and co-workers [72,73,117] use x-ray reflection to determine the composition perpendicular to the surface and grazing incidence x-ray diffraction to study the transverse structure of an interface. In a study of bismuth gallium mixtures. [Pg.78]

There has been much activity in the study of monolayer phases via the new optical, microscopic, and diffraction techniques described in the previous section. These experimental methods have elucidated the unit cell structure, bond orientational order and tilt in monolayer phases. Many of the condensed phases have been classified as mesophases having long-range correlational order and short-range translational order. A useful analogy between monolayer mesophases and die smectic mesophases in bulk liquid crystals aids in their characterization (see [182]). [Pg.131]

The structure of a fluid is characterized by the spatial and orientational correlations between atoms and molecules detemiiued through x-ray and neutron diffraction experiments. Examples are the atomic pair correlation fiinctions (g, g. . ) in liquid water. An important feature of these correlation functions is that... [Pg.437]

The fimctiong(ri is central to the modem theory of liquids, since it can be measured experimentally using neutron or x-ray diffraction and can be related to the interparticle potential energy. Experimental data [1] for two liquids, water and argon (iso-electronic with water) are shown in figure A2.4.1 plotted as a fiinction ofR = R /a, where a is the effective diameter of the species, and is roughly the position of the first maximum in g (R). For water, a = 2.82 A,... [Pg.561]

Detailed x-ray diffraction studies on polar liquid crystals have demonstrated tire existence of multiple smectic A and smectic C phases [M, 15 and 16]. The first evidence for a smectic A-smectic A phase transition was provided by tire optical microscopy observations of Sigaud etal [17] on binary mixtures of two smectogens. Different stmctures exist due to tire competing effects of dipolar interactions (which can lead to alternating head-tail or interdigitated stmctures) and steric effects (which lead to a layer period equal to tire molecular lengtli). These... [Pg.2546]

X-ray diffraction is one of the primary methods to detennine the stmcture of a liquid crystal phase [22, 51]. [Pg.2553]

Leadbetter A J and Norris E K 1979 Distribution functions in hree liquid crystals from x-ray diffraction measurements Moiec. Phys. 38 669-86... [Pg.2568]

Idistribution functions can be measured experimentally using X-ray diffraction. The regular arrangement of the atoms in a crystal gives the characteristic X-ray diffraction pattern with bright, sharp spots. For liquids, the diffraction pattern has regions of high and low intensity but no sharp spots. The X-ray diffraction pattern can be analysed to calculate an experimental distribution function, which can then be compared with that obtained from the simulation. [Pg.325]

Amphiphiles often have a complex phase behaviour with several liquid crystalline phases These liquid crystalline phases are often characterised by long-range order in one directior together with the formation of a layer structure. The molecules may nevertheless be able tc move laterally within the layer and perpendicular to the surface of the layer. Structura information can be obtained using spectroscopic techniques including X-ray and neutror diffraction and NMR. The quadrupolar splitting in the deuterium NMR spectrum can be... [Pg.411]

Figure 8.28 shows how the X-rays fall on the solid or liquid sample which then emits X-ray fluorescence in the region 0.2-20 A. The fluorescence is dispersed by a flat crystal, often of lithium fluoride, which acts as a diffraction grating (rather like the quartz crystal in the X-ray monochromator in Figure 8.3). The fluorescence may be detected by a scintillation counter, a semiconductor detector or a gas flow proportional detector in which the X-rays ionize a gas such as argon and the resulting ions are counted. Figure 8.28 shows how the X-rays fall on the solid or liquid sample which then emits X-ray fluorescence in the region 0.2-20 A. The fluorescence is dispersed by a flat crystal, often of lithium fluoride, which acts as a diffraction grating (rather like the quartz crystal in the X-ray monochromator in Figure 8.3). The fluorescence may be detected by a scintillation counter, a semiconductor detector or a gas flow proportional detector in which the X-rays ionize a gas such as argon and the resulting ions are counted.
Figure 4 Comparison of average distances from the bilayer center along the bilayer normal for deuterated methyl and methylene groups distributed throughout the DPPC molecule computed from constant-pressure MD calculations and neutron diffraction measurements on gel and liquid crystalline phase DPPC bilayers. Figure 4 Comparison of average distances from the bilayer center along the bilayer normal for deuterated methyl and methylene groups distributed throughout the DPPC molecule computed from constant-pressure MD calculations and neutron diffraction measurements on gel and liquid crystalline phase DPPC bilayers.
Some of the techniques included apply more broadly than just to surfaces, interfaces, or thin films for example X-Ray Diffraction and Infrared Spectroscopy, which have been used for half a century in bulk solid and liquid analysis, respectively. They are included here because they have by now been developed to also apply to surfaces. A few techniques that are applied almost entirely to bulk materials (e.g.. Neutron Diffraction) are included because they give complementary information to other methods or because they are referred to significantly in the 10 materials volumes in the Series. Some techniques were left out because they were considered to be too restricted to specific applications or materials. [Pg.764]

The particle size analyzer, based on laser light diffraction, consists of a laser source, beam expander, collector lens, and detector (Fig. ] 3.45). The detector contains light diodes arranged to form a radial diode-array detector. The particle sample to be measured can be blown across the laser beam (dry sample), or it can be circulated via a measurement cell in a liquid suspension. In the latter case, the beam is direaed through the transparent cell. [Pg.1294]

Electron diffraction studies provide valuable information about structures in the gas phase. Consequently, this method is important for chalcogen-nitrogen compounds that are liquids or gases at room temperature. The application of this technique has provided evidence for the monomeric structures of the 1,2,3,5-dithiadiazolyl radical [CEsCNSSN] (3.3) and the 1,3,2-dithiazolyl [CEsCSNSCCEs] (3.4), a... [Pg.31]

The molecular orbital description of the bonding in NO is similar to that in N2 or CO (p. 927) but with an extra electron in one of the tt antibonding orbitals. This effectively reduces the bond order from 3 to 2.5 and accounts for the fact that the interatomic N 0 distance (115 pm) is intermediate between that in the triple-bonded NO+ (106 pm) and values typical of double-bonded NO species ( 120 pm). It also interprets the very low ionization energy of the molecule (9.25 eV, compared with 15.6 eV for N2, 14.0 eV for CO, and 12.1 eV for O2). Similarly, the notable reluctance of NO to dimerize can be related both to the geometrical distribution of the unpaired electron over the entire molecule and to the fact that dimerization to 0=N—N=0 leaves the total bond order unchanged (2 x 2.5 = 5). When NO condenses to a liquid, partial dimerization occurs, the cis-form being more stable than the trans-. The pure liquid is colourless, not blue as sometimes stated blue samples owe their colour to traces of the intensely coloured N2O3.6O ) Crystalline nitric oxide is also colourless (not blue) when pure, ° and X-ray diffraction data are best interpreted in terms of weak association into... [Pg.446]


See other pages where Liquids, diffraction is mentioned: [Pg.1535]    [Pg.336]    [Pg.1535]    [Pg.336]    [Pg.117]    [Pg.124]    [Pg.245]    [Pg.1264]    [Pg.1361]    [Pg.1378]    [Pg.1990]    [Pg.81]    [Pg.423]    [Pg.309]    [Pg.466]    [Pg.472]    [Pg.224]    [Pg.656]    [Pg.129]    [Pg.175]    [Pg.238]    [Pg.239]    [Pg.49]    [Pg.295]    [Pg.32]    [Pg.115]    [Pg.296]    [Pg.375]    [Pg.495]    [Pg.624]    [Pg.633]    [Pg.771]    [Pg.833]   
See also in sourсe #XX -- [ Pg.448 ]




SEARCH



Diffraction liquid crystals

Diffraction methods liquids

Liquid metals diffraction studies

Liquid structure diffraction studies

Liquids, diffraction immersion

Liquids, diffraction structure

Liquids, diffraction supercooled

Lyotropic liquid crystals, diffraction

Lyotropic liquid crystals, diffraction pattern

Optically Tunable Diffraction Gratings in Polymer-Stabilized Liquid Crystals

Richard H. Templer 3 Structural Studies of Liquid Crystals by X-ray Diffraction

Structural Studies of Liquid Crystals by X-Ray Diffraction

X-ray diffraction in liquids

© 2024 chempedia.info