Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liouville eigenvectors

As with the uncoupled case, one solution involves diagonalizing the Liouville matrix, iL+R+K. If U is the matrix with the eigenvectors as cohmms, and A is the diagonal matrix with the eigenvalues down the diagonal, then (B2.4.32) can be written as (B2.4.33). This is similar to other eigenvalue problems in quantum mechanics, such as the transfonnation to nonnal co-ordinates in vibrational spectroscopy. [Pg.2100]

Note that the Liouville matrix, iL+R+K may not be Hennitian, but it can still be diagonalized. Its eigenvalues and eigenvectors are not necessarily real, however, and the inverse of U may not be its complex-conjugate transpose. If complex numbers are allowed in it, equation (B2.4.33) is a general result. Since A is a diagonal matrix it can be expanded in tenns of the individual eigenvalues, X. . The inverse matrix can be applied... [Pg.2100]

To represent observables in n-dimensional space it was concluded before that Hermitian matrices were required to ensure real eigenvalues, and orthogonal eigenvectors associated with distinct eigenvalues. The first condition is essential since only real quantities are physically measurable and the second to provide the convenience of working in a cartesian space. The same arguments dictate the use of Hermitian operators in the wave-mechanical space of infinite dimensions, which constitutes a Sturm-Liouville problem in the interval [a, 6], with differential operator C(x) and eigenvalues A,... [Pg.197]

With a wave model in mind as a chemical theory it is helpful to first examine wave motion in fewer dimensions. In all cases periodic motion is associated with harmonic functions, best known of which are defined by Laplace s equation in three dimensions. It occurs embedded in Schrodinger s equation of wave mechanics, where it generates the complex surface-harmonic operators which produce the orbital angular momentum eigenvectors of the hydrogen electron. If the harmonic solutions of the four-dimensional analogue of Laplace s equation are to be valid in the Minkowski space-time of special relativity, they need to be Lorentz invariant. This means that they should not be separable in the normal sense of Sturm-Liouville problems. In standard wave mechanics this is exactly the way in which space and time variables are separated to produce a three-dimensional wave equation. [Pg.189]


See other pages where Liouville eigenvectors is mentioned: [Pg.2101]    [Pg.372]    [Pg.41]    [Pg.5]    [Pg.2101]    [Pg.89]    [Pg.167]    [Pg.7]    [Pg.150]   
See also in sourсe #XX -- [ Pg.239 ]




SEARCH



Eigenvector

© 2024 chempedia.info