Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Linear Dichroism IRLD

IR spectroscopy is a powerful and readily available orientation characterization technique. It offers a high chemical selectivity since most functional groups absorb at distinct wavelengths (typically in the 2.5-25 pm range (4,000 00 cm-1 range)), which often depend on their local environment. IR spectroscopy thus provides qualitative and quantitative information about the chemical nature of a sample, its structure, interactions, etc. The potential of IR spectroscopy for orientation characterization stems from the fact that absorption only occurs if the electric field vector of the incident radiation, E, has a component parallel to the transition dipole moment, M, of the absorbing entity. The absorbance, A, is given [Pg.305]

Normal incidence transmission IRLD measurements are used to study thin films (typically 100 pm thickness and less, depending on the molar extinction coefficient of the bands) with in-plane uniaxial orientation. Two spectra are recorded sequentially with the radiation polarized parallel (p) and perpendicular (s) to the principal (machine) direction of the sample. The order parameter of the transition moment of the studied vibration is calculated from either the dichroic ratio (R — Ap/As) or the dichroic difference (AA = Ap—As) as  [Pg.307]

Ap and As are the absorbances measured with p- and s-polarization, respectively, and A0 — (Ap + 2As)/3 is the structural absorbance spectrum that would be measured for an isotropic sample. The order parameter of the main chain can be determined using the Legendre addition theorem (Equation (24)). [Pg.307]

Normal transmission IRLD can also be used to characterize polymeric fibers, although scattering can induce sloping baselines. Raman spectroscopy then becomes a convenient alternative. Rutledge et al. have recently probed the orientation in electrospun nanofibers composed of a core of Bombyx mori fibroin and an outer shell of poly (ethylene oxide) [24], The orientation values were low, less than 0.1, as is often the case in electrospun fibers. [Pg.308]

Normal incidence measurements are sufficient for uniaxially oriented samples, but a third spectrum along the ND (Y) is necessary to describe the orientation in biaxially oriented samples or in the case of uniaxial anisotropy in the thickness [Pg.308]


See other pages where Linear Dichroism IRLD is mentioned: [Pg.295]    [Pg.305]    [Pg.306]    [Pg.295]    [Pg.305]    [Pg.306]    [Pg.666]   


SEARCH



Linear dichroism

© 2024 chempedia.info