Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lewis strength

Donor strengths, taken from ref. 207b, based upon the solvent effect on the symmetric stretching frequency of the soft Lewis acid HgBr2. Gutmann s donor number taken from ref 207b, based upon AHr for the process of coordination of an isolated solvent molecule to the moderately hard SbCL molecule in dichioroethane. ° Bulk donor number calculated as described in ref 209 from the solvent effect on the adsorption spectrum of VO(acac)2. Taken from ref 58, based on the NMR chemical shift of triethylphosphine oxide in the respective pure solvent. Taken from ref 61, based on the solvatochromic shift of a pyridinium-A-phenoxide betaine dye. [Pg.30]

Table 2.5. Apparent second-order rate constants for the catalysed Diels-Alder reaction between Ic and 2, equilibrinm constants for complexation of 2.4c to different Lewis-acids (Kj) and second-order rate constants for the reaction of these complexes with 2.5 (k at) in water at 2M ionic strength at 25°C. Table 2.5. Apparent second-order rate constants for the catalysed Diels-Alder reaction between Ic and 2, equilibrinm constants for complexation of 2.4c to different Lewis-acids (Kj) and second-order rate constants for the reaction of these complexes with 2.5 (k at) in water at 2M ionic strength at 25°C.
Table 2.7. Hammett p-values for complexation of 2.4a-e to different Lewis-adds and for rate constants (kcat) of the Diels-Alder reaction of 2.4a-e with 2.5 catalysed by different Lewis-acids in water at 2.00 M ionic strength at 25°C. Table 2.7. Hammett p-values for complexation of 2.4a-e to different Lewis-adds and for rate constants (kcat) of the Diels-Alder reaction of 2.4a-e with 2.5 catalysed by different Lewis-acids in water at 2.00 M ionic strength at 25°C.
Clearly, complete understanding of solvent effects on the enantioselectivity of Lewis-acid catalysed Diels-Alder reactions has to await future studies. For a more detailed mechanistic understanding of the origins of enantioselectivity, extension of the set of solvents as well as quantitative assessment of the strength of arene - arene interactions in these solvent will be of great help. [Pg.97]

Chapter 5 also demonstrates that a combination of Lewis-acid catalysis and micellar catalysis can lead to accelerations of enzyme-like magnitudes. Most likely, these accelerations are a consequence of an efficient interaction between the Lewis-acid catalyst and the dienophile, both of which have a high affinity for the Stem region of the micelle. Hence, hydrophobic interactions and Lewis-acid catalysis act cooperatively. Unfortunately, the strength of the hydrophobic interaction, as offered by the Cu(DS)2 micellar system, was not sufficient for extension of Lewis-acid catalysis to monodentate dienophiles. [Pg.163]

Boron trichloride, usually in conjunction with an additional Lewis acid, effects o-chloroacetylation of anilines. The resulting products are converted to indoles by reduction with NaBH4.[l], The strength of the Lewis acid required depends upon the substitution pattern on the ring. With ER substituents no additional... [Pg.75]

As we have seen the nucleophile attacks the substrate m the rate determining step of the Sn2 mechanism it therefore follows that the rate of substitution may vary from nucleophile to nucleophile Just as some alkyl halides are more reactive than others some nucleophiles are more reactive than others Nucleophilic strength or nucleophilicity, is a measure of how fast a Lewis base displaces a leaving group from a suitable substrate By measuring the rate at which various Lewis bases react with methyl iodide m methanol a list of then nucleophihcities relative to methanol as the standard nucleophile has been compiled It is presented m Table 8 4... [Pg.337]

The boron atom in boron trifluoride is hybridized to the sp planar configuration and consequently is coordinatively unsaturated, ie, a Lewis acid. Its chemistry centers around satisfying this unsaturation by the formation with Lewis bases of adducts that are nearly tetrahedral sp [ The electrophilic properties (acid strengths) of the trihaloboranes have been found to increase in the order BF < BCl < BBr < BI (3,4). [Pg.159]

Mechanistically the rate-determining step is nucleophilic attack involving the hydroxide ion and the more positive siUcon atom in the Si—H bond. This attack has been related to the Lewis acid strength of the corresponding silane, ie, to the abiUty to act as an acceptor for a given attacking base. Similar inductive and steric effects apply for acid hydrolysis of organosilanes (106). [Pg.26]

The boron tnhahdes are strong Lewis acids, however, the order of relative acid strengths, BI > > BCl > BF, is contrary to that expected... [Pg.222]

Cosolvents ana Surfactants Many nonvolatile polar substances cannot be dissolved at moderate temperatures in nonpolar fluids such as CO9. Cosolvents (also called entrainers, modifiers, moderators) such as alcohols and acetone have been added to fluids to raise the solvent strength. The addition of only 2 mol % of the complexing agent tri-/i-butyl phosphate (TBP) to CO9 increases the solubility ofnydro-quinone by a factor of 250 due to Lewis acid-base interactions. Veiy recently, surfac tants have been used to form reverse micelles, microemulsions, and polymeric latexes in SCFs including CO9. These organized molecular assemblies can dissolve hydrophilic solutes and ionic species such as amino acids and even proteins. Examples of surfactant tails which interact favorably with CO9 include fluoroethers, fluoroacrylates, fluoroalkanes, propylene oxides, and siloxanes. [Pg.2002]

The strength of the complexation is a function of both the donor atom and the metal ion. The solvent medium is also an important factor because solvent molecules that are potential electron donors can compete for the Lewis acid. Qualitative predictions about the strength of donor-acceptor complexation can be made on the basis of the hard-soft-acid-base concept (see Section 1.2.3). The better matched the donor and acceptor, the stronger is the complexation. Scheme 4.3 gives an ordering of hardness and softness for some neutral and ionic Lewis acids and bases. [Pg.234]

The parameters and Ca are associated with the Lewis acid, and Eg and Cb with the base. a and b are interpreted as measures of electrostatic interaction, and Ca and Cb as measures of covalent interaction. Drago has criticized the DN approach as being based upon a single model process, and this objection applies also to the — A/y fBFs) model. Drago s criticism is correct, yet we should be careful not to reject a simple concept provided its limits are appreciated. Indeed, many very useful chemical quantities are subject to this criticism for example, p o values are measures of acid strength with reference to the base water. [Pg.426]

Phenol has different chemical properties from those of typical alcohols. Display the electrostatic potential map for phenol. Does this suggest that phenol is likely to be a stronger or weaker acid than any of the compounds discussed above Compare the electrostatic potential map for 4-nitrophenol to that for phenol. What effect does substitution by nitro have on acid strength Explain your result by considering charge delocalization in the conjugate base. Draw all reasonable Lewis structures for phenoxide anion and for 4-nitrophenoxide anion. Which is more delocalized Is this consistent with experimental pKa s ... [Pg.122]


See other pages where Lewis strength is mentioned: [Pg.50]    [Pg.240]    [Pg.110]    [Pg.157]    [Pg.392]    [Pg.407]    [Pg.94]    [Pg.94]    [Pg.50]    [Pg.240]    [Pg.110]    [Pg.157]    [Pg.392]    [Pg.407]    [Pg.94]    [Pg.94]    [Pg.373]    [Pg.242]    [Pg.584]    [Pg.114]    [Pg.2]    [Pg.774]    [Pg.163]    [Pg.449]    [Pg.380]    [Pg.44]    [Pg.177]    [Pg.315]    [Pg.186]    [Pg.236]    [Pg.14]    [Pg.57]    [Pg.475]    [Pg.900]    [Pg.515]    [Pg.439]    [Pg.114]    [Pg.194]    [Pg.119]    [Pg.309]    [Pg.320]    [Pg.86]   
See also in sourсe #XX -- [ Pg.93 ]




SEARCH



Acid strengths of Lewis acids

Estimating the Strength of Lewis Acids

Lewis acid and base strength

Lewis acid strengths, moderation

Lewis acids acid strength

Lewis acids relative strength

Lewis acids strength

Lewis acids/bases strengths

Lewis base strengths

Lewis bases, anion strength, coordination

Lewis-Randall, ionic strength

Structure, acid-base strength Lewis

© 2024 chempedia.info