Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lewis LASC-catalyzed aldol reaction

These Lewis acid-surfactant-combined catalysts (LASCs) were found to form stable colloidal dispersion systems with organic substrates in water and efficiently catalyze aldol reactions of aldehydes with very water-labile silyl enol ethers. [Pg.549]

Sc(() l f) ( is an effective catalyst of the Mukaiyama aldol reaction in both aqueous and non-aqueous media (vide supra). Kobayashi et al. have reported that aqueous aldehydes as well as conventional aliphatic and aromatic aldehydes are directly and efficiently converted into aldols by the scandium catalyst [69]. In the presence of a surfactant, for example sodium dodecylsulfate (SDS) or Triton X-100, the Sc(OTf)3-catalyzed aldol reactions of SEE, KSA, and ketene silyl thioacetals can be performed successfully in water wifhout using any organic solvent (Sclieme 10.23) [72]. They also designed and prepared a new type of Lewis acid catalyst, scandium trisdodecylsulfate (STDS), for use instead of bofh Sc(OTf) and SDS [73]. The Lewis acid-surfactant combined catalyst (LASC) forms stable dispersion systems wifh organic substrates in water and accelerates fhe aldol reactions much more effectively in water fhan in organic solvents. Addition of a Bronsted acid such as HCl to fhe STDS-catalyzed system dramatically increases the reaction rate [74]. [Pg.424]

With these results in hand, we have next introduced new types of Lewis acids, e.g scandium tris(-dodecyl sulfate) (4a) and scandium trisdodecanesul-fonate (5a) (Chart 1).[1S1 These Lewis acid-surfactant-combined catalysts (LASCs) were found to form stable colloidal dispersions with organic substrates in water and to catalyze efficiently aldol reactions of aldehydes with very water-labile silyl enol ethers. [Pg.7]

The catalytic asymmetric aldol reaction has been applied to the LASC system, which uses copper bis(-dodecyl sulfate) (4b) instead of CufOTf. 1261 An example is shown in Eq. 6. In this case, a Bronsted add, such as lauric add, is necessary to obtain a good yield and enantioseledivity. This example is the first one involving Lewis acid-catalyzed asymmetric aldol reactions in water without using organic solvents. Although the yield and the selectivity are still not yet optimized, it should be noted that this appredable enantioselectivity has been attained at ambient temperature in water. [Pg.10]

Sinou and co-workers [73] studied the influence of different surfactants on the palladium-catalyzed asymmetric alkylation of l,3-diphenyl-2-propenyl acetate with dimethyl malonate in presence of potassium carbonate as base and non-water-soluble chiral ligands. Best results in activity and enatioselectivity (> 90% ee) were observed with 2,2 -bis(diphenylphosphino)-l,l -binaphthyl (BINAP) as ligand and cetyltrimethylammonium hydrogen sulfate as surfactant in aqueous medium. Water-stable Lewis acids as catalysts for aldol reactions were developed by Kobayashi and co-workers [74]. An acceleration of the reaction was indicated in presence of SDS as anionic surfactants. An additional promotion could be observed by combination of Lewis acid and surfactant (LASCs = Lewis acid-surfactant-combined catalysts) as shown in Eq. (3). Surfactant the anion of dodecanesulfonic acid. [Pg.265]


See other pages where Lewis LASC-catalyzed aldol reaction is mentioned: [Pg.348]    [Pg.329]    [Pg.3132]    [Pg.505]   
See also in sourсe #XX -- [ Pg.298 ]




SEARCH



LASC,

Lewis catalyzed

Lewis reactions

© 2024 chempedia.info