Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lewis Basic Substrates

Prior to Yamamoto s entry into this field, the scope of chiral phosphoric acid catalysis was strictly limited to electrophiUc activation of imine substrates. By designing a catalyst with higher acidity it was suspected that activation of less Lewis basic substrates might be possible. To this end, Yamamoto reported incorporation of the strongly electron accepting N-triflyl group [57] into a phosphoric acid derivative to yield the highly acidic N-triflyl phosphoramide 13 (Scheme 5.32)... [Pg.95]

Cross-metathesis applications, 11, 200 enynes, 11, 282 in ethenolysis, 11, 198 Lewis-basic substrates, 11, 193 in one-pot reactions, 11, 197 for reagent synthesis, 11, 188 as simple metathesis reaction, 1, 171 Crotyltributyltins, with aldehydes, 9, 352 Crown ether clathrates, diorganozinc compounds, 2, 335 Crown ether-pendant polysilanes, preparation, 3, 577 Crown-ethers, as hosts, 12, 813... [Pg.87]

It must be mentioned that the most versatile and representative organosilicon Lewis acid is undoubtedly trimethylsilyl triflate (la), the structure of which reflects the inertness of tetraalkylsilanes for Lewis basic substrates and the requirement of a counter-anion to increase the electrophilicity of the silicon center. Noyori s pioneering studies on the reactions of trimethylsilyl triflate not only provided a general outline for stoichiometric transformations, but also inspired an extraordinary number of subsequent studies of the catalytic use of Lewis acids in selective organic synthesis. [Pg.355]

While this protocol relied on the in situ generation of the relevant phosphite for catalytic hydroarylation reactions, Murai and coworkers developed effective methodologies for the direct use of Lewis-basic substrates, such as acetophenone 20 (Scheme 9) [18, 59], Thereby, regioselective ruthenium-catalyzed anti-Markovnivkov alkylations and alkenylations were accomplished using alkenes or alkynes [60] as substrates, respectively. Recently, an extension of this protocol to terminal alkynes was reported, which involved a phosphine ligand-free catalytic system (see below), along with stoichiometric amounts of a peroxide [61]. [Pg.216]

Transition metals have been used to complex Lewis-basic centers in metathesis substrates and to arrange the reacting olefins in such a way that cycliza-tion is facilitated. Olefin metathesis of 122, for example, proceeds with good yield to the bispyridine macrocycle 123 (Eq. 17) [115]. [Pg.258]

The development of catalytic asymmetric reactions is one of the major areas of research in the field of organic chemistry. So far, a number of chiral catalysts have been reported, and some of them have exhibited a much higher catalytic efficiency than enzymes, which are natural catalysts.111 Most of the synthetic asymmetric catalysts, however, show limited activity in terms of either enantioselectivity or chemical yields. The major difference between synthetic asymmetric catalysts and enzymes is that the former activate only one side of the substrate in an intermolecular reaction, whereas the latter can not only activate both sides of the substrate but can also control the orientation of the substrate. If this kind of synergistic cooperation can be realized in synthetic asymmetric catalysis, the concept will open up a new field in asymmetric synthesis, and a wide range of applications may well ensure. In this review we would like to discuss two types of asymmetric two-center catalysis promoted by complexes showing Lewis acidity and Bronsted basicity and/or Lewis acidity and Lewis basicity.121... [Pg.105]

Aromatic substrates containing Lewis basic substituents can undergo ort/io-lithiation. Quenching these anions with dinitrogen tetroxide at low temperature is an example of nucleophilic aromatic nitration." Similar examples have been reported with anions generated from Grignard reactions with arylhalides." ... [Pg.142]

The focus of this review is to discuss the role of Cinchona alkaloids as Brpnsted bases in organocatalytic asymmetric reactions. Cinchona alkaloids are Lewis basic when the quinuclidine nitrogen initiates a nucleophilic attack to the substrate in asymmetric reactions such as the Baylis-Hillman (Fig. 3), P-lactone synthesis, asymmetric a-halogenation, alkylations, carbocyanation of ketones, and Diels-Alder reactions 30-39] (Fig. 4). [Pg.148]

Axially chiral phosphoric acid 3 was chosen as a potential catalyst due to its unique characteristics (Fig. 2). (1) The phosphorus atom and its optically active ligand form a seven-membered ring which prevents free rotation around the P-0 bond and therefore fixes the conformation of Brpnsted acid 3. This structural feature cannot be found in analogous carboxylic or sulfonic acids. (2) Phosphate 3 with the appropriate acid ity should activate potential substrates via protonation and hence increase their electrophilicity. Subsequent attack of a nucleophile and related processes could result in the formation of enantioenriched products via steren-chemical communication between the cationic protonated substrate and the chiral phosphate anion. (3) Since the phosphoryl oxygen atom of Brpnsted acid 3 provides an additional Lewis basic site, chiral BINOL phosphate 3 might act as bifunctional catalyst. [Pg.399]


See other pages where Lewis Basic Substrates is mentioned: [Pg.143]    [Pg.450]    [Pg.61]    [Pg.85]    [Pg.142]    [Pg.179]    [Pg.180]    [Pg.193]    [Pg.194]    [Pg.59]    [Pg.220]    [Pg.61]    [Pg.85]    [Pg.330]    [Pg.143]    [Pg.450]    [Pg.61]    [Pg.85]    [Pg.142]    [Pg.179]    [Pg.180]    [Pg.193]    [Pg.194]    [Pg.59]    [Pg.220]    [Pg.61]    [Pg.85]    [Pg.330]    [Pg.119]    [Pg.234]    [Pg.474]    [Pg.234]    [Pg.60]    [Pg.259]    [Pg.69]    [Pg.113]    [Pg.495]    [Pg.505]    [Pg.524]    [Pg.132]    [Pg.164]    [Pg.173]    [Pg.39]    [Pg.360]    [Pg.398]    [Pg.173]    [Pg.318]    [Pg.116]    [Pg.144]    [Pg.148]    [Pg.256]    [Pg.193]    [Pg.108]    [Pg.246]   
See also in sourсe #XX -- [ Pg.143 ]




SEARCH



Basicity Lewis

© 2024 chempedia.info