Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Leaving groups displacement

In general, the more nitro groups present on the aromatic ring the easier the leaving group displacement. Nucleophilic aromatic substitution is therefore a very important reaction in the chemistry of polynitroarylenes. While the use of such reactions has been extensive in the synthesis of explosives, the reaction also has important implications for the chemical stability of many polynitroarylenes (discussed in Section 4.8.2). [Pg.157]

Inert metal complexes, 34 145-147 acid-catalyzed paths, 34 167 alteration of leaving group displacement rate, 34 150... [Pg.142]

Precursors other than the alkyl halides are not often used, but the pattern of reactivity should be similar except that there will be differences in the ease of anionic leaving group displacement. There is little advantage, and some inconvenience or added cost likely, in obtaining other precursors. [Pg.160]

Allylic amine is a less reactive leaving group[7], but the allylic ammonium salts 214 (quaternary ammonium salts) can be used for allylalion(l30,131]. Allylic sulfonium salts are also used for the allylation[130]. The allylic nitrile in the cyclic aminonitrile 215 can be displaced probably via x-allylic complex formation. The possibility of the formation of the dihydropyridinium salts 216 and subsequent conjugate addition are less likelyfl 32],... [Pg.319]

This reactivity pattern underlies a group of important synthetic methods in which an a-substituent is displaced by a nucleophile by an elimination-addition mechanism. Even substituents which are normally poor leaving groups, such as alkoxy and dialkylamino, are readily displaced in the indole series. [Pg.4]

An important method for construction of functionalized 3-alkyl substituents involves introduction of a nucleophilic carbon synthon by displacement of an a-substituent. This corresponds to formation of a benzylic bond but the ability of the indole ring to act as an electron donor strongly influences the reaction pattern. Under many conditions displacement takes place by an elimination-addition sequence[l]. Substituents that are normally poor leaving groups, e.g. alkoxy or dialkylamino, exhibit a convenient level of reactivity. Conversely, the 3-(halomethyl)indoles are too reactive to be synthetically useful unless stabilized by a ring EW substituent. 3-(Dimethylaminomethyl)indoles (gramine derivatives) prepared by Mannich reactions or the derived quaternary salts are often the preferred starting material for the nucleophilic substitution reactions. [Pg.119]

Two stereochemical possibilities present themselves In the pathway shown in Fig ure 8 la the nucleophile simply assumes the position occupied by the leaving group It attacks the substrate at the same face from which the leaving group departs This is called front side displacement or substitution with retention of configuration... [Pg.331]

As we have seen the nucleophile attacks the substrate m the rate determining step of the Sn2 mechanism it therefore follows that the rate of substitution may vary from nucleophile to nucleophile Just as some alkyl halides are more reactive than others some nucleophiles are more reactive than others Nucleophilic strength or nucleophilicity, is a measure of how fast a Lewis base displaces a leaving group from a suitable substrate By measuring the rate at which various Lewis bases react with methyl iodide m methanol a list of then nucleophihcities relative to methanol as the standard nucleophile has been compiled It is presented m Table 8 4... [Pg.337]

The reactions of alcohols with hydrogen halides to give alkyl halides (Chapter 4) are nucleophilic substitution reactions of alkyloxonium ions m which water is the leaving group Primary alcohols react by an 8 2 like displacement of water from the alkyloxonium ion by halide Sec ondary and tertiary alcohols give alkyloxonium ions which form carbo cations m an S l like process Rearrangements are possible with secondary alcohols and substitution takes place with predominant but not complete inversion of configuration... [Pg.357]

The Williamson ether synthesis (Sec tion 16 6) An alkoxide ion displaces a halide or similar leaving group in an Sn2 reaction The alkyl halide cannot be one that is prone to elimination and so this reaction is limited to methyl and primary alkyl halides There is no limitation on the alkoxide ion that can be used... [Pg.693]

Alkyl esters of trifluoromethanesulfonic acid, commonly called triflates, have been prepared from the silver salt and an alkyl iodide, or by reaction of the anhydride with an alcohol (18,20,21). Triflates of the 1,1-dihydroperfluoroalkanols, CF2S020CH2R can be prepared by the reaction of perfluoromethanesulfonyl fluoride with the dihydroalcohol in the presence of triethylamine (22,23). Triflates are important intermediates in synthetic chemistry. They are among the best leaving groups known, so they are commonly employed in anionic displacement reactions. [Pg.315]

Rate studies show that base-cataly2ed reactions are second order and depend on the phenolate and methylene glycol concentrations. The most likely path involves a nucleophilic displacement by the phenoxide on the methylene glycol (1), with the hydroxyl as the leaving group. In alkaline media, the methylolated quinone intermediate is readily converted to the phenoxide by hydrogen-ion abstraction (21). [Pg.295]

Nitrogen nucleophiles used to diplace the 3 -acetoxy group include substituted pyridines, quinolines, pyrimidines, triazoles, pyrazoles, azide, and even aniline and methylaniline if the pH is controlled at 7.5. Sulfur nucleophiles include aLkylthiols, thiosulfate, thio and dithio acids, carbamates and carbonates, thioureas, thioamides, and most importandy, from a biological viewpoint, heterocycHc thiols. The yields of the displacement reactions vary widely. Two general approaches for improving 3 -acetoxy displacement have been reported. One approach involves initial, or in situ conversion of the acetoxy moiety to a more facile leaving group. The other approach utilizes Lewis or Brmnsted acid activation (87). [Pg.32]

Conversion to a more facile, sulfur-derived, leaving group can be achieved by treatment with sodium thiosulfate or salts of thio and dithio acids (75,87). Under anhydrous conditions, boron tribromide converts the 3 -acetoxy group to a bromide whereas trimethyl silyl iodide gives good yields of the 3 -iodide (87,171,172). These 3 -halides are much more reactive, even when the carboxyl group is esterified, and can be displaced readily by cyano and by oxygen nucleophiles (127). [Pg.32]

Methyl bromide slowly hydrolyzes in water, forming methanol and hydrobromic acid. The bromine atom of methyl bromide is an excellent leaving group in nucleophilic substitution reactions and is displaced by a variety of nucleophiles. Thus methyl bromide is useful in a variety of methylation reactions, such as the syntheses of ethers, sulfides, esters, and amines. Tertiary amines are methylated by methyl bromide to form quaternary ammonium bromides, some of which are active as microbicides. [Pg.294]

One of the more important approaches to 1-azirines involves a similar base-induced cycloelimination reaction of a suitably functionalized ketone derivative (route c. Scheme 1). This reaction is analogous to route (b) (Scheme 1) used for the synthesis of aziridines wherein displacement of the leaving group at nitrogen is initiated by a -carbanionic center. An example of this cycloelimination involves the Neber rearrangement of oxime tosylate esters (357 X = OTs) to 1-azirines and subsequently to a-aminoketones (358) (71AHC-(13)45). The reaction has been demonstrated to be configurationally indiscriminate both syn and anti ketoxime tosylate esters afforded the same product mixture of a-aminoketones... [Pg.82]


See other pages where Leaving groups displacement is mentioned: [Pg.49]    [Pg.251]    [Pg.360]    [Pg.129]    [Pg.129]    [Pg.298]    [Pg.422]    [Pg.164]    [Pg.164]    [Pg.402]    [Pg.422]    [Pg.129]    [Pg.129]    [Pg.129]    [Pg.209]    [Pg.49]    [Pg.251]    [Pg.360]    [Pg.129]    [Pg.129]    [Pg.298]    [Pg.422]    [Pg.164]    [Pg.164]    [Pg.402]    [Pg.422]    [Pg.129]    [Pg.129]    [Pg.129]    [Pg.209]    [Pg.135]    [Pg.318]    [Pg.110]    [Pg.336]    [Pg.352]    [Pg.356]    [Pg.445]    [Pg.330]    [Pg.153]    [Pg.13]    [Pg.86]    [Pg.96]    [Pg.129]    [Pg.165]    [Pg.74]    [Pg.90]    [Pg.32]    [Pg.33]    [Pg.82]   
See also in sourсe #XX -- [ Pg.228 ]




SEARCH



© 2024 chempedia.info