Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Laser flash photolysis, potential

Another transient aminoxyl radical has been generated , and employed in H-abstraction reactivity determinations" . Precursor 1-hydroxybenzotriazole (HBT, Table 2) has been oxidized by cyclic voltammetry (CV) to the corresponding >N—O species, dubbed BTNO (Scheme 9). A redox potential comparable to that of the HPI —PINO oxidation, i.e. E° 1.08 V/NHE, has been obtained in 0.01 M sodium acetate buffered solution at pH 4.7, containing 4% MeCN". Oxidation of HBT by either Pb(OAc)4 in AcOH, or cerium(IV) ammonium nitrate (CAN E° 1.35 V/NHE) in MeCN, has been monitored by spectrophotometry , providing a broad UV-Vis absorption band with A-max at 474 nm and e = 1840 M cm. As in the case of PINO from HPI, the absorption spectrum of aminoxyl radical BTNO is not stable, but decays faster (half-life of 110 s at [HBT] = 0.5 mM) than that of PINO . An EPR spectrum consistent with the structure of BTNO was obtained from equimolar amounts of CAN and HBT in MeCN solution . Finally, laser flash photolysis (LFP) of an Ar-saturated MeCN solution of dicumyl peroxide and HBT at 355 nm gave rise to a species whose absorption spectrum, recorded 1.4 ms after the laser pulse, had the same absorption maximum (ca 474 nm) of the spectrum recorded by conventional spectrophotometry (Scheme 9)59- 54... [Pg.718]

It is useful to briefly discuss some of the common and, perhaps, less common experimental approaches to determine the kinetics and thermodynamics of radical anion reactions. While electrochemical methods tend to be most often employed, other complementary techniques are increasingly valuable. In particular, laser flash photolysis and photoacoustic calorimetry provide independent measures of kinetics and thermodynamics of molecules and ion radicals. As most readers will not be familiar with all of these techniques, they will be briefly reviewed. In addition, the use of convolution voltammetry for the determination of electrode kinetics is discussed in more detail as this technique is not routinely used even by most electrochemists. Throughout this chapter we will reference all electrode potentials to the saturated calomel electrode and energies are reported in kcal mol. ... [Pg.92]

As mentioned above, the use of equation (12) presupposes that either the standard potential or the rate constant is known. In many cases it is possible to determine the rate constant using other methods such as laser flash photolysis (see later). In many other cases it is possible to obtain rough estimates of the standard potential for the reduction of AB by using model compounds that are structurally similar but less reactive. Keep in mind that an error of only 30 mV in the estimate of E leads to an error in the estimated rate constant by one order of magnitude. Under the best of conditions, the determination of standard potentials is in the order of 5 mV leading to errors in rate constants in the order of a factor of 1.5. [Pg.94]

The fates of the G(-H) radicals in DNA are mostly determined by reactions with other substrates. Here, we consider the reactions of the G(-H) radicals with types of free radicals that are generated in vivo under conditions of oxidative stress. One of these radicals is the nitrogen dioxide radical, NO2. This radical can be generated in vivo by the oxidation of nitrite, N02, a process that can be mediated by myeloperoxidase [111, 112] as well as by other cellular oxidants [113, 114]. An alternative pathway of the generation of NO2 is the homolysis of peroxynitrite [102, 115] or nitrosoperoxycarbonate formed by the reaction of peroxynitrite with carbon dioxide [99-101]. The redox potential, E°( NO2/NO2")=1.04 V vs NHE [116] is less than that of guanine, E7[G(-H)7G] = 1.29 V vs NHE [8]. Pulse radiolysis [117] and laser flash photolysis [109] experiments have shown that, in agreement with these redox potentials, N02 radicals do not react with intact DNA. However, N02 radicals can oxidize 8-oxo-dG that has a lower redox potential ( 7=0.74 vs NHE [56]) than any of the normal nucleobases [109]. [Pg.152]

A number of minima corresponding to oxonium ylides and H-bonded structures were found on the potential-energy surface for reaction of singlet carbenes with water and alcohols." Laser flash photolysis revealed that the rates of reaction between cyclopentadienylidene or fluorenylidene and alcohols increased with alcohol acidity and had linear Bronsted plots with slopes of 0.061 and 0.082, respectively.100 These results point to protonation with a very early transition state or to concerted OH insertion. For tetrachlorocyclopentadienylidene, the results showed that ylide formation (100) is predominant. [Pg.236]

Methanesulfonic acid, dimethyl sulfoxide and dimethyl sulfone are potential intermediates in the gas phase oxidation of dimethylsulfide in the atmosphere. We nave measured the rate of reaction of MSA with OH in aqueous solution using laser flash photolysis of dilute hydrogen peroxide solutions as a source of hydroxyl radicals, and using competition kinetics with thiocyanate as the reference solute. The rate of the reaction k (OH + SCN ) was remeasured to be 9.60 1.12 x 109 M 1 s 1, in reasonable agreement with recent literature determinations. The rates of reaction of the hydroxyl radical with the organosulfur compounds were found to decrease in the order DMSO (k = 5.4 0.3 x 109 M-i s 1) > MSA (k = 4.7 0.9 x 107 M l S 1) > DMS02 (k = 2.7 . 15 x 107 M 1 s ). The implications of the rate constant for the fate of MSA in atmospheric water are discussed. [Pg.518]

The potential of laser flash photolysis in the study of carbene reactions with heteroatoms has come to be recognized in recent years. A number of kinetic studies using this technique have been carried out with carbene precursors in nitrile solvents.122-127 An absorption band at 470 nm was observed in the laser flash photolysis of diazofluorene (246) in inert solvents. This band was assigned to triplet fluorenylidene (247). In acetonitrile, however, a second band was also detected at 400 nm and whose buildup is concurrent with the decay at 470 nm.122 Laser flash experiments in other nitrile solvents (i.e., benzonitrile and pivalonitrile) also produced a transient absorption band which is very similar to that observed in acetonitrile. The band at 400 nm was assigned to an intermediate nitrile ylide (248). This absorption could be quenched on addition of an electron-deficient olefin providing good support for its... [Pg.150]

Having recognized that upper states can potentially contribute in a non-negligible way to the photochemical behavior of a molecule, efforts have been made over the past 15 years to probe this behavior using a number of methods in particular, two-color (two-laser) flash photolysis and the laser jet technique [9]. [Pg.251]

Thus, electron transfers from a series of unhindered, partially hindered, and heavily hindered aromatic electron donors (with matched oxidation potentials) to photoactivated quinone acceptors are kinetically examined by laser flash photolysis, and the free-energy correlations of the ET rate constants are scrutinized [31]. The second-order rate constants of electron transfers from hindered donors such as hexaethylbenzene or tri-icrt-butylbenzene strongly depend on the temperature, the solvent polarity and salt effects, and they follow the free-energy correlation predicted by Marcus theory (see Figure 20A). Moreover, no spectroscopic or kinetic evidence for the formation of encounter complexes (exciplexes) with the photo-activated quinones prior to electron transfer is observed. [Pg.1331]


See other pages where Laser flash photolysis, potential is mentioned: [Pg.266]    [Pg.352]    [Pg.274]    [Pg.558]    [Pg.53]    [Pg.65]    [Pg.89]    [Pg.1235]    [Pg.848]    [Pg.1235]    [Pg.99]    [Pg.150]    [Pg.110]    [Pg.99]    [Pg.213]    [Pg.867]    [Pg.869]    [Pg.305]    [Pg.36]    [Pg.90]    [Pg.47]    [Pg.374]    [Pg.67]    [Pg.193]    [Pg.893]    [Pg.1793]    [Pg.2593]    [Pg.2599]    [Pg.79]    [Pg.75]    [Pg.96]    [Pg.357]    [Pg.357]   


SEARCH



Flash photolysis

Laser flash photolysis

© 2024 chempedia.info