Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Large black chafer

Although not of fatty acid origin another group of scarab beetles utilizes amino acid derivatives as pheromones [119]. The large black chafer, Holotrichia parallela, uses L-isoleucine methyl ester [ 120] and the cranberry white grub, Phyllophaga anxia, uses both L-isoleucine and i.-valine methyl esters [121]. More recently L-isoleucine methyl ester, N-formyl L-isoleucine methyl ester, and N-acetyl L-isoleucine methyl ester were identified in the scarab beetle Phyllophaga elenans [ 122]. These pheromone components are obviously derived from the amino acids isoleucine and valine. [Pg.117]

In contrast to the rutelines, the melolonthine scarabs generally use terpenoid-and amino acid-derived pheromones (reviewed in Leal, 1999). For example, the female large black chafer, Holotrichia parallela Motschulsky, produces methyl (2.S, 3. Sj - 2 - am ino-3-methy lpcn tanoatc (L-isoleucine methyl ester) as an amino acid-derived sex pheromone (Leal et al., 1992 Leal, 1997). There is no direct evidence that the chafer beetles or any other Coleoptera use the shikimic acid pathway for de novo pheromone biosynthesis, but some scarabs and scolytids (see section 6.6.4.2) may convert amino acids such as tyrosine, phenylalanine, or tryptophan to aromatic pheromone components (Leal, 1997,1999). In another melolonthine species, the female grass grab beetle, Costelytra zealandica (White), the phenol sex pheromone is produced by symbiotic bacteria (Henzell and Lowe, 1970 Hoyt et al. 1971). [Pg.144]

Leal W. S., Sawada M., Matsuyama S., Kuwahara Y. and Hasegawa M. (1993) Unusual periodicity of sex pheromone production in the large black chafer Holotrichiaparallela. J. Chem. Ecol. 19, 1381-1391. [Pg.192]


See other pages where Large black chafer is mentioned: [Pg.21]    [Pg.449]    [Pg.9]    [Pg.245]    [Pg.21]    [Pg.449]    [Pg.9]    [Pg.245]   


SEARCH



© 2024 chempedia.info