Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lanthanum-sodium-BINOL complex

This idea was realized very successfully by Shibasaki and Sasai in their heterobimetallic chiral catalysts [17], Two representative well-defined catalysts. LSB 9 (Lanthanum/Sodium/BINOL complex) and ALB 10 (Aluminum/Lithium/BINOL complex), are shown in Figure 8D.2, whose structures were confirmed by X-ray crystallography. In these catalysts, the alkali metal (Na, Li, or K)-naphthoxide works as a Br0nsted base and lanthanum or aluminum works as a Lewis acid. [Pg.573]

In 1995, Shibasaki s group disclosed the first example of multifunctional heterobimetallic complex-catalyzed Michael reaction of malonate to enone. The chiral catalyst, lanthanum-sodium-BINOL complex (/ )-LSB, was prepared from La(Of-Pr)3, (/ )-BINOL, and NaOt-Bu. Two different metals indeed play their unique roles to enhance the reactivity of both substrate partners by locating them in designated positions. The Lewis acidic metal (lanthanides or group 13 elements) has been found capable to activate the acceptor, whereas the second metal center (alkali metals bound to a Brpnsted base) assists the coordination of enolate. The proposed catalytic cycle is shown in Scheme 9.5. [Pg.252]

In the presence of the sodium-containing heterobimetallic catalyst (R)-LSB (10 mol%), the reaction of enone 52 with TBHP (2 equiv) was found to give the desired epoxide with 83% ee and in 92% yield [56]. Unfortunately LSB as well as other bimetallic catalysts were not useful for many other enones. Interestingly, in marked contrast to LSB an alkali metal free lanthanoid BINOL complex, which was prepared from Ln(0- -Pr)3 and (R)-BINOL or a derivative thereof (1 or 1.25 molar equiv) in the presence of MS 4A (Scheme 17), was found to be applicable to a range of enone substrates. Regarding enones with an aryl-substitu-ent in the a-keto position, the most effective catalytic system was revealed when using a lanthanum-(.R/)-3-hydroxymethyl-BINOL complex La-51 (l-5mol%) and cumene hydroperoxide (CMHP) as oxidant. The asymmetric epoxidation proceeded with excellent enantioselectivities (ees between 85 and 94%) and yields up to 95%. [Pg.162]

Interestingly, almost the first results in asymmetric hydrophosphonylation with acyclic imines revealed that the lanthanum-potassium-BINOL catalyst LPB was more effective than the analog sodium and lithium complexes LSB and LLB, both of which have been shown to be highly efficient in asymmetric C-C bond formations (see Sect. 3). As a representative example, in the presence of LPB (20 mol%) and 5 equiv of dimethyl phosphite the hydrophosphonylation of im-... [Pg.167]

Shibasaki made several improvements in the asymmetric Michael addition reaction using the previously developed BINOL-based (R)-ALB, (R)-6, and (R)-LPB, (R)-7 [1]. The former is prepared from (R)-BINOL, diisobutylaluminum hydride, and butyllithium, while the latter is from (R)-BINOL, La(Oz -Pr)3, and potassium f-butoxide. Only 0.1 mol % of (R)-6 and 0.09 mol % of potassium f-butoxide were needed to catalyze the addition of dimethyl malonate to 2-cy-clohexenone on a kilogram scale in >99% ee, when 4-A molecular sieves were added [15,16]. (R)-6 in the presence of sodium f-butoxide catalyzes the asymmetric 1,4-addition of the Horner-Wadsworth-Emmons reagent [17]. (R)-7 catalyzes the addition of nitromethane to chalcone [18]. Feringa prepared another aluminum complex from BINOL and lithium aluminum hydride and used this in the addition of nitroacetate to methyl vinyl ketone [19]. Later, Shibasaki developed a linked lanthanum reagent (R,R)-8 for the same asymmetric addition, in which two BINOLs were connected at the 3-positions with a 2-oxapropylene... [Pg.154]

The first chiral aluminum catalyst for effecting asymmetric Michael addition reactions was reported by Shibasaki and coworkers in 1986 [82], The catalyst was prepared by addition of two equivalents of (i )-BINOL to lithium aluminum hydride which gave the heterobimetallic complex 394. The structure of 394 was supported by X-ray structure analysis of its complex with cyclohexenone in which it was found that the carbonyl oxygen of the enone is coordinated to the lithium. This catalyst was found to result in excellent induction in the Michael addition of malonic esters to cyclic enones, as indicated in Sch. 51. It had previously been reported that a heterobimetallic catalyst prepared from (i )-BINOL and sodium and lanthanum was also effective in similar Michael additions [83-85]. Although the LaNaBINOL catalyst was faster, the LiAlBINOL catalyst 394 (ALB) led to higher asymmetric induction. [Pg.339]

It was proposed that a Lewis acid lanthanum center controls the direction of the carbonyl function and activates the enone while the sodium alkoxide forms enolate intermediates and regenerates the catalyst by hydrogen abstraction (Scheme 6). Other Ln/alkali metal combinations, including La/Li, show negligible asymmetric induction, yet give almost racemic products in excellent yield. In contrast, alkali-metal free BINOL ester enolate complexes catalyze Michael reactions with high enantioselectivities, albeit at lower temperatures. [Pg.994]


See other pages where Lanthanum-sodium-BINOL complex is mentioned: [Pg.492]    [Pg.492]    [Pg.1068]    [Pg.163]   


SEARCH



BINOL

BINOL complex

© 2024 chempedia.info