Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lanthanide-catalyzed hydroamination mechanism

When Marks and co-workers [10] published their investigations of the organo-lanthanide-catalyzed intramolecular hydroamination of appropriate a,ai-amino-lefms, the opened a useful synthetic route to different types of cyclic amines (Scheme 4) in combination with a thorough analysis of the catalytic reaction mechanism and the structure-reactivity relationships. [Pg.518]

A different mechanism again is involved in the hydroamination reaction catalyzed by lanthanide complexes, Cpff.nR which is applied to the cyclization of unsaturated amines. The mechanism involves the formation of a metal amide species from both the catalysts (by different routes), followed by the turnover —limiting intramolecular insertion of the alkene to give a cr-complex, from which the decomplexed cyclic amine is obtained after reaction with a second molecule of the unsaturated amine19,20,107. [Pg.862]

The insertion approach is very successful in the hydroamination of alkynes and alkenes catalyzed by lanthanide complexes developed by Marks et al. [220]. Thorough mechanistic studies have been undertaken for the intramolecular reaction (hydroamination-cyclization of aminoalkenes), although the intermolecular version of the process is also efficient [222]. The mechanism of the reaction can be represented in a simplified way by Scheme 6.68. The insertion step is almost thermoneutral, but the protonolysis of the M-aminoalkyl bond that follows is exothermic and provides the necessary driving force. The insertion of the alkene into the Ln-N bond is irreversible and rate determining and it goes through a... [Pg.363]

Catalysts for tfie additions of amines to vinylarenes have also been developed. These catalytic reactions include some of the first hydroaminations of unstrained olefins catalyzed by late transition metals, as well as examples catalyzed by lanthanide complexes. These additions occur with Markovrukov selectivity with one set of catalysts and with anti-Markovnikov selectivity with several others. These additions occur by several different mechanisms that are presented in Section 16.5.3.2. [Pg.705]

As discussed in Chapter 9, the insertion of olefins and alk)nes into metal-amido complexes is limited to a few examples. Such insertion reactions are proposed to occur as part of the mechanism of the hydroamination of norbomene catalyzed by an iridium(I) complex and as part of the hydroamination of alkenes and alkynes catalyzed by lanthanide and actinide metal complexes. This reaction was clearly shown to occur with the iridium(I) amido complex formed by oxidative addition of aniline, and this insertion process is presented in Chapter 9. The mechanism of the most active Ir(I) catalyst system for this process involving added fluoride is imknown. [Pg.715]

Only a limited number of organoactinide catalysts have been investigated for the hydroamination/cyclization of aminoalkenes (Fig. 4, Table 2) [55, 96-98]. The constrained geometry catalysts 11-An (An = Th, U) show high activity comparable to the corresponding rare earth metal complexes and can be applied for a broad range of substrates [55, 96, 97]. The ferrocene-diamido uranium complex 12 was also catalytically active for aminoalkene cyclization, but at a somewhat reduced rate [98]. Mechanistic studies suggest that the actinide-catalyzed reaction occurs via a lanthanide-like metal-amido insertion mechanism and not via an imido mechanism (as proposed for alkyne hydroaminations), because also secondary aminoalkenes can be cyclized [55, 98]. [Pg.61]

Amine activatitMi pathway has been well studied in catalysis by lanthanides, early transition metals, and alkali metals. In metal amide chemistry of late transition metals, there are mainly two pathways to synthesize metal amide complexes applicable under hydroamination conditions [54], One is oxidative addition of amines to produce a metal amide species bearing hydride (Scheme 8a). The other gives a metal amide species by deprotonation of an amine metal intermediate derived from the coordination of amines to metal center, and it often occurs as ammonium salt elimination by the second amine molecule (Scheme 8b). Although the latter type of amido metal species is rather limited in hydroamination by late transition metals, it is often proposed in the mechanism of palladium-catalyzed oxidative amination reaction, which terminates the catalytic cycle by p-hydride elimination [26]. Hydroamination through aminometallation with metal amide species demands at least two coordination sites on metal, one for amine coordination and another for C-C multiple bond coordination. Accordingly, there is a marked difference between the hydroamination via C-C multiple bond activation, which demands one coordination site on metal, and via amine activation. [Pg.126]


See other pages where Lanthanide-catalyzed hydroamination mechanism is mentioned: [Pg.715]    [Pg.349]    [Pg.203]    [Pg.358]    [Pg.386]   
See also in sourсe #XX -- [ Pg.715 ]




SEARCH



Hydroamination

Hydroamination mechanisms

Hydroaminations

Lanthanide-catalyzed hydroamination

Lanthanides, hydroamination

© 2024 chempedia.info