Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lamina coordinate system

All components are given in the principal lamina coordinate system. Inverting eqn 4.2, the in-plane stiffness matrix is obtained ... [Pg.79]

However, as mentioned previously, orthotropic laminae are often constructed in such a manner that the principal material coordinates do not coincide with the natural coordinates of the body. This statement is not to be interpreted as meaning that the material itself is no longer orthotropic instead, we are just looking at an orthotropic material in an unnatural manner, i.e., in a coordinate system that is oriented at some angle to the principal material coordinate system. Then, the basic question is given the stress-strain relations In the principal material coordinates, what are the stress-strain relations in x-y coordinates ... [Pg.76]

In Section 2.2, the stress-strain relations (generalized Hooke s law) for anisotropic and orthotropic as well as isotropic materials are discussed. These relations have two commonly accepted manners of expression compliances and stiffnesses as coefficients (elastic constants) of the stress-strain relations. The most attractive form of the stress-strain relations for orthotropic materials involves the engineering constants described in Section 2.3. The engineering constants are particularly helpful in describing composite material behavior because they are defined by the use of very obvious and simple physical measurements. Restrictions in the form of bounds are derived for the elastic constants in Section 2.4. These restrictions are useful in understanding the unusual behavior of composite materials relative to conventional isotropic materials. Attention is focused in Section 2.5 on stress-strain relations for an orthotropic material under plane stress conditions, the most common use of a composite lamina. These stress-strain relations are transformed in Section 2.6 to coordinate systems that are not aligned with the principal material... [Pg.118]

The reduced stiffnesses, Qy, are defined in terms of the engineering constants in Equation (2.66). In any other coordinate system in the plane of the lamina, the stresses are... [Pg.191]

The next level of complexity in the treatment is to orient the apphed stress at an angle, 6, to the lamina fiber axis, as illustrated in Figure 5.119. A transformation matrix, [T], must be introduced to relate the principal stresses, o, 02, and tu, to the stresses in the new x-y coordinate system, a, ay, and t j, and the inverse transformation matrix, [T]- is used to convert the corresponding strains. The entire development will not be presented here. The results of this analysis are that the tensile moduli of the composite along the x and y axes, E, and Ey, which are parallel and transverse to the applied load, respectively, as well as the shear modulus, Gxy, can be related to the lamina tensile modulus along the fiber axis, 1, the transverse tensile modulus, E2, the lamina shear modulus, Gu, Poisson s ratio, vn, and the angle of lamina orientation relative to the applied load, 6, as follows ... [Pg.512]

FIGURE 2.4 Coordinate system for the idealized representation of a lamina of amicropo-rous material containing redox-active centers deposited on an electrode in contact with a suitable electrolyte. [Pg.31]

The lamina stress-strain relation in the global coordinate system is (Herakovich 1998, GangaRao et aL 2007) ... [Pg.80]

The orthotropic stress and strain relationships of Equations 8.42 and 8.43 were defined in principal material directions, for which there is no coupling between extension and shear behavior. However, the coordinates natural to the solution of the problem generally will not coincide with the principal directions of orthotropy. For example, consider a simply supported beam manufactured from an angle-ply laminate. The principal material coordinates of each ply of the laminate make angles 0 relative to the axis of the beam. In the beam problem stresses and strains are usually defined in the beam coordinate system (jc,y), which is off-axis relative to the lamina principal axes (L, T). [Pg.184]


See other pages where Lamina coordinate system is mentioned: [Pg.74]    [Pg.239]    [Pg.369]    [Pg.327]   
See also in sourсe #XX -- [ Pg.423 ]




SEARCH



Coordinate system

Lamina

© 2024 chempedia.info