Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Copolymerization lactones

Interestingly, the lactones copolymerization is responsible for a decrease in both and degree of crystallinity of the copolyesters when compared to the parent homopolymers. This behavior is illustrated in Fig. 1 in the case of po-ly( CL-co-6VL) random copolymers [35]. [Pg.11]

When lactones copolymerize with cyclic ethers, such as j -ptopiolactone with tetrahydrofiiran, in the early steps of the reaction the cyclic ethers polymerize almost exclusively. This is due to the greater basicity of the ethers. When the concentration of the cyclic ethers depletes to the equilibrium value, their consumption decreases markedly. Polymerizations of the lactams com-mence. The products are block copolymer. [Pg.210]

As early as 1940 it has been established9 that diketene does not polymerize by a radical mechanism. It has, however, been shown later10 that it undergoes reactions of radical copolymerization with many vinyl monomers11. In this reaction the double bond is involved and the lactone ring is preserved in the copolymer. [Pg.99]

Thus, the copolymerization of AN with 1 yields polymers of type 2b, containing (3-lactone rings12. ... [Pg.99]

Polylactides, 18 Poly lactones, 18, 43 Poly(L-lactic acid) (PLLA), 22, 41, 42 preparation of, 99-100 Polymer age, 1 Polymer architecture, 6-9 Polymer chains, nonmesogenic units in, 52 Polymer Chemistry (Stevens), 5 Polymeric chiral catalysts, 473-474 Polymeric materials, history of, 1-2 Polymeric MDI (PMDI), 201, 210, 238 Polymerizations. See also Copolymerization Depolymerization Polyesterification Polymers Prepolymerization Repolymerization Ring-opening polymerization Solid-state polymerization Solution polymerization Solvent-free polymerization Step-grown polymerization processes Vapor-phase deposition polymerization acid chloride, 155-157 ADMET, 4, 10, 431-461 anionic, 149, 174, 177-178 batch, 167 bulk, 166, 331 chain-growth, 4 continuous, 167, 548 coupling, 467 Friedel-Crafts, 332-334 Hoechst, 548 hydrolytic, 150-153 influence of water content on, 151-152, 154... [Pg.597]

The effect of a catalyst is important in cationic copolymerizations. Epoxides and /3-lactones form random copolymers only with trialkyl aluminum catalysts. Unusual sequence distributions were observed in the cationic copolymerization of epoxides or lactones using Lewis acids175-177) have been attributed to the di-... [Pg.16]

The enantioselectivity was greatly improved by the copolymerization with 7- or 13-membered non-substituted lactone using lipase CA catalyst (Scheme 8) the ee value reached ca. 70% in the copolymerization of (3-BL with DDL. ft is to be noted that in the case of lipase CA catalyst, the (5 )-isomer was preferentially reacted to give the (5 )-enriched optically active copolymer. The lipase CA-catalyzed copolymerization of 8-caprolactone (6-membered) with DDL enan-tioselectively proceeded, yielding the (/ )-enriched optically active polyester with ee of 76%. [Pg.219]

The copolymerization of lactones took place through enzyme catalysis [92]. The copolymerization of e-CL with d-VL catalyzed by lipase PF affords the corresponding copolymer having a molecular weight of several thousand. From 13C NMR analysis, the copolymer was found to be of random structure having both units, suggesting the frequent occurrence of transesterifications between the polyesters. In the copolymerization of 8-OL with e-CL or DDL, random copolyesters were also formed [84], whereas the copolymer from e-CL and PDL was not statistically random [88]. [Pg.250]

As described in Section 9.1.2.2.3, several lanthanocene alkyls are known to be ethylene polymerization catalysts.221,226-229 Both (188) and (190) have been reported to catalyze the block copolymerization of ethylene with MMA (as well as with other polar monomers including MA, EA and lactones).229 The reaction is only successful if the olefin is polymerized first reversing the order of monomer addition, i.e., polymerizing MMA first, then adding ethylene only affords PMMA homopolymer. In order to keep the PE block soluble the Mn of the prepolymer is restricted to <12,000. Several other lanthanide complexes have also been reported to catalyze the preparation of PE-b-PMMA,474 76 as well as the copolymer of MMA with higher olefins such as 1-hexene.477... [Pg.27]

Anionic block copolymerizations of MM A with lactones proceeded smoothly to give copolymers with Mw/Mn = 1.11-1.23 when the monomers were added in this order. However, when the order of addition was reversed, no copolymerization took place [3c], i.e., no addition of MMA to the polylactone active end group occurred (Scheme 12). [Pg.77]

Yasuda et al. [122] extended the above work to the block copolymerization of ethylene with lactones. 5-Valerolactone and s-caprolactone were combined with the growing polyethylene end at ambient temperature and the expected AB-type copolymers (100 1 to 100 89) were obtained at high yield. Reversed addition of the monomers (first MMA or lactones and then ethylene) induced no block copolymerization at all, even in the presence of excess ethylene, and only homo-poly(MMA) and homo-poly(lactone) were produced. [Pg.97]

Initially PDPs were synthesized by stepwise polycondensation of linear activated depsipeptide [93]. In 1985, Helder, Feijen and coworkers reported the synthesis of PDPs by ROP of a morpholine-2,5-dione derivative (cyclic dimer of ot-hydroxy- and a-amino acid cyclodepsipeptide, cDP) [94, 95]. The ROP method gives an alternative type of PDP by homopolymerization and also allows the copolymerization with other monomers (lactones and cyclic diesters) including LA, GA, and CL to give a wide variety of functional biodegradable materials. The synthesis of PDPs as functional biomaterials has been recently reviewed [17]. [Pg.74]

Conversions of about 80% were obtained within a few minutes at 90°C. The polymer could also be cleaved by cross-metathesis with an excess of 4-octene which gave, as the main product, 9-tridecenyl-7-undecenoate, thus confirming the structure assignment as indicated in Eq. (62). The unsaturated lactone was also copolymerized with cyclooctene, 1,5-cy-clooctadiene, and cyclopentene under the previously stated conditions to afford linear copolymers which were high molecular weight, unsaturated, rubbery polyesters (110). [Pg.487]

Equations 1 to 3 show some of fixation reactions of carbon dioxide. Equations la and lb present coupling reactions of CO2 with diene, triene, and alkyne affording lactone and similar molecules [2], in a process catalyzed by low valent transition metal compounds such as nickel(O) and palladium(O) complexes. Another interesting CO2 fixation reaction is copolymerization of CO2 and epoxide yielding polycarbonate (equation 2). This reaction is catalyzed by aluminum porphyrin and zinc diphenoxide [3],... [Pg.80]

Shirahama H, Shomi M, Sakane M, Yasuda H (1996) Biodegradation of novel optically active polyesters synthesized by copolymerization of (R)-MOHEL with lactone. Macromolecules 29 4821 828... [Pg.213]

Copolymerizations between pairs of cyclic esters, acetals, sulfides, siloxanes, alkenes, lactams, lactones, /V-carboxy-a-amino acid anhydrides, imines, and other cyclic monomers... [Pg.601]

Epoxides readily undergo anionic copolymerization with lactones and cyclic anhydrides because the propagating centers are similar—alkoxide and carboxylate [Aida et al., 1985 Cherdron and Ohse, 1966 Inoue and Aida, 1989 Luston and Vass, 1984]. Most of the polymerizations show alternating behavior, with the formation of polyester, but the mechanism for alternation is unclear. There are few reports of cationic copolymerizations of lactones and cyclic ethers other than the copolymerizations of [5-propiolactone with tetrahydrofuran and... [Pg.603]


See other pages where Copolymerization lactones is mentioned: [Pg.65]    [Pg.318]    [Pg.182]    [Pg.65]    [Pg.318]    [Pg.182]    [Pg.479]    [Pg.348]    [Pg.17]    [Pg.225]    [Pg.211]    [Pg.216]    [Pg.53]    [Pg.76]    [Pg.77]    [Pg.80]    [Pg.10]    [Pg.12]    [Pg.27]    [Pg.29]    [Pg.45]    [Pg.65]    [Pg.65]    [Pg.78]    [Pg.86]    [Pg.276]    [Pg.375]    [Pg.600]    [Pg.602]    [Pg.603]    [Pg.604]    [Pg.30]    [Pg.31]    [Pg.31]   
See also in sourсe #XX -- [ Pg.104 ]




SEARCH



Copolymerization of Cyclic Carbonates with Lactones

Copolymerization of Lactones with Cyclic Ethers

Lactones copolymerization with cyclic ethers

Lactones ring-opening copolymerizations

© 2024 chempedia.info