Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetics and Transport Processes

In Section 3.4.2, we introdnced the concept of chemical vapor infiltration, CVI, in which a chemical vapor deposition process is carried out in a porous preform to create a reinforced matrix material. In that section we also described the relative competition between the kinetic and transport processes in this processing technique. In this section we elaborate npon some of the common materials used in CVI processing, and we briefly describe two related processing techniques sol infiltration and polymer infiltration. [Pg.802]

The Surface Chemkin formalism [73] was developed to provide a general, flexible framework for describing complex reactions between gas-phase, surface, and bulk phase species. The range of kinetic and transport processes that can take place at a reactive surface are shown schematically in Fig. 11.1. Heterogeneous reactions are fundamental in describing mass and energy balances that form boundary conditions in reacting flow calculations. [Pg.445]

We have used CO oxidation on Pt to illustrate the evolution of models applied to interpret critical effects in catalytic oxidation reactions. All the above models use concepts concerning the complex detailed mechanism. But, as has been shown previously, critical. effects in oxidation reactions were studied as early as the 1930s. For their interpretation primary attention is paid to the interaction of kinetic dependences with the heat-and-mass transfer law [146], It is likely that in these cases there is still more variety in dynamic behaviour than when we deal with purely kinetic factors. A theory for the non-isothermal continuous stirred tank reactor for first-order reactions was suggested in refs. 152-155. The dynamics of CO oxidation in non-isothermal, in particular adiabatic, reactors has been studied [77-80, 155]. A sufficiently complex dynamic behaviour is also observed in isothermal reactors for CO oxidation by taking into account the diffusion both in pores [71, 147-149] and on the surfaces of catalyst [201, 202]. The simplest model accounting for the combination of kinetic and transport processes is an isothermal continuously stirred tank reactor (CSTR). It was Matsuura and Kato [157] who first showed that if the kinetic curve has a maximum peak (this curve is also obtained for CO oxidation [158]), then the isothermal CSTR can have several steady states (see also ref. 203). Recently several authors [3, 76, 118, 156, 159, 160] have applied CSTR models corresponding to the detailed mechanism of catalytic reactions. [Pg.269]

Another consideration in the use of hydride materials in Ni/MH batteries is related to the electrochemical kinetics and transport processes. The power output of the battery depends critically on these processes. During discharge, hydrogen stored in the bulk metal must be brought to the electrode surface by diffusion. The hydrogen then must react with hydroxyl ions at the metal electrolyte interface. As a consequence, surface properties such as oxide thickness, electrical conductivity, surface area, porosity and the degree of catalytic activity... [Pg.125]

Since chemical reaction engineering considerations apply to nondcterministic as well as deterministic methods they will be briefly dealt with separately. The interaction of chemical kinetics and transport processes and their effect on catalyst activity and selectivity in reaction networks will be emphasized. Some attention will be also paid to catalyst deactivation. [Pg.266]


See other pages where Kinetics and Transport Processes is mentioned: [Pg.15]    [Pg.5]    [Pg.275]    [Pg.814]    [Pg.82]    [Pg.303]    [Pg.305]    [Pg.306]    [Pg.308]    [Pg.310]    [Pg.312]    [Pg.314]    [Pg.316]    [Pg.318]    [Pg.320]    [Pg.322]    [Pg.324]    [Pg.326]    [Pg.328]    [Pg.330]    [Pg.332]    [Pg.334]    [Pg.336]    [Pg.338]    [Pg.340]    [Pg.342]    [Pg.344]    [Pg.346]    [Pg.348]    [Pg.350]    [Pg.352]    [Pg.354]    [Pg.356]    [Pg.358]    [Pg.360]    [Pg.362]    [Pg.364]    [Pg.366]    [Pg.368]    [Pg.369]    [Pg.371]    [Pg.373]    [Pg.375]    [Pg.377]   


SEARCH



Kinetics, transport and

Process, kinetics

Transport kinetics

Transport processes

Transportation processes

Transporters kinetics

© 2024 chempedia.info