Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic methods flash photolysis

There are a number of non-electrochemical techniques that have proven invaluable in combination with electrochemical results in understanding the chemistry and the kinetics. Laser flash photolysis (LFP) is a well-established technique for the study of the transient spectroscopy and kinetics of reactive intermediates. The technique is valuable for the studying of the kinetics of the reactions of radical anions, particularly those that undergo rapid stepwise dissociative processes. The kinetics of fragmentation of radical anions can be determined using this method if (i) the radical anion of interest can be formed in a process initiated by a laser pulse, (ii) it has a characteristic absorption spectrum with a suitable extinction coefficient, and (iii) the rate of decay of the absorption of the radical anion falls within the kinetic window of the LFP technique typically this is in the order of 1 x 10" s to 1 X 10 s . [Pg.102]

Some of the most important questions one can ask in the study of kinetics concern the rates of reactions of the intermediates. In some cases, values can be obtained by direct experiments. For example, one might generate the intermediate by an independent method capable of producing it much more rapidly than it reacts. Then it can be examined in its own right. Chapter 11 presents methods for doing so, such as flash photolysis and pulse radiolysis. [Pg.103]

Flash photolysis with microwave detection of charge carriers could become an additional technique in the future. The method has not yet been applied to colloids but has been used with small suspended particles. Immediately after the laser flash a conductivity signal was observed which decayed in the 0.1 to 1 microsecond range. The signal was longer-lived for a suspension of TiOj in para-dioxane than in Decalin. Such an effect of the surrounding medium on the decay kinetics of the conductivity indicates that surface states are involved... [Pg.156]

The kinetics of reactions of NO with ferri- and ferro-heme proteins and models under ambient conditions have been studied by time-resolved spectroscopic techniques. Representative results are summarized in Table I (22-28). Equilibrium constants determined for the formation of nitrosyl complexes of met-myoglobin (metMb), ferri-cytochrome-c (Cyt111) and catalase (Cat) are in reasonable agreement when measured both by flash photolysis techniques (K= konlkQff) and by spectroscopic titration in aqueous media (22). Table I summarizes the several orders of magnitude range of kon and kQs values obtained for ferri- and ferro-heme proteins. Many k0f[ values were too small to determine by flash photolysis methods and were determined by other means. The small values of kQ result in very large equilibrium constants K for the... [Pg.210]

Recent advances in measuring the kinetics of the various electron-transfer steps in this system have been achieved by use of flash photolysis of ruthenated derivatives of cytochrome c (Ru-Cc) (17-19). In these studies [Ru(bpy)3]2+ is covalently bound to a surface residue at a site that does not interfere with the docking of cytochrome c to cytochrome c oxidase. Solutions are then prepared containing both Ru-Cc and cytochrome c oxidase, and the two proteins associate to form a 1 1 complex. Flash photolysis of the solution leads directly to the excitation of the RuII(bpy)3 site, which then reduces heme c very rapidly. This method thus provides a convenient means to observe the subsequent intracomplex electron transfer from heme c to cytochrome c oxidase and further stages in the process. [Pg.372]

Vary fast reactions, both in gaseous and liquid phases, can be studied by this method. In flash photolysis technique, a light flash of very high intensity and very short duration ( 10 6 sec) is produced in the neighborhood of the reaction vessel. This produces atoms, free radicals and excited species in the reaction system. These species undergo further reactions which can be followed by spectroscopic means. The method is also known as kinetic spectroscopy. The first order rate constant as large as 105 sec-1 and second order rate constants as large as 1011 mol dm sec-1 can be measured by this technique. [Pg.182]

Using kinetic flash photolysis, the decay of the transient species can be determined as a function of time at the appropriate single wavelength found by the spectroscopic method. [Pg.190]

The kinetic data reported in this chapter have been determined either by direct measurements, using for example kinetic EPR spectroscopy and laser flash photolysis techniques or by competitive kinetics like the radical clock methodology (see below). The method for each given rate constant will be indicated as well as the solvent used. An extensive compilation of the kinetics of reaction of Group 14 hydrides (RsSiH, RsGeH and RsSnH) with radicals is available [1]. [Pg.31]

Recognizing this, Richard and Jencks, proposed using azide ion as a clock for obtaining absolute reactivities of less stable cations. The basic assumption is that azide ion is reacting at the diffusion limit with the cation. Taking 5 x 10 M s as the second-order rate constant for this reaction, measurement of the selectivity fcaz Nu for the competition between azide ion and a second nucleophile then provides the absolute rate constant since feaz is known. The clock approach has now been applied to a number of cations, with measurements of selectivities by both competition kinetics and common ion inhibition. Other nucleophiles have been employed as the clock. The laser flash photolysis (LFP) experiments to be discussed later have verified the azide clock assumption. Cations with lifetimes in water less than about 100 ps do react with azide ion with a rate constant in the range 5-10x10 M- s-, " which means that rate constants obtained by a clock method can be viewed with reasonable confidence. [Pg.18]

Nitrenium ions (or imidonium ions in the contemporaneous nomenclature) were described in a 1964 review of nitrene chemistry by Abramovitch and Davis. A later review by Lansbury in 1970 focused primarily on vinylidine nitrenium ions. Gassmann s ° 1970 review was particularly influential in that it described the application of detailed mechanistic methods to the question of the formation of nitrenium ions as discrete intermediates. McClelland" reviewed kinetic and lifetime properties of nitrenium ions, with a particular emphasis on those studied by laser flash photolysis (LFP). The role of singlet and triplet states in the reactions of nitrenium ions was reviewed in 1999. Photochemical routes to nitrenium ions were discussed in a 2000 review. Finally, a noteworthy review of arylnitrenium ion chemistry by Novak and Rajagopal " has recently appeared. [Pg.597]

Radical-anion complexes Scope of this review 91 Thermodynamic and kinetic methodologies Voltammetric methods 92 Homogeneous redox catalysis 94 Convolution analysis 98 Laser flash photolysis 102 Photoacoustic calorimetry 103 Thermochemical estimates 105 Fleduction of C—O and O O bonds 106 Reduction of ethers 107 Reduction of peroxides and endoperoxides Reduction of S—S and C—S bonds 136 Reduction of disulfides 137 Reduction of sulfides 150 Concluding remarks 157 Fleferences 160... [Pg.85]

It is useful to briefly discuss some of the common and, perhaps, less common experimental approaches to determine the kinetics and thermodynamics of radical anion reactions. While electrochemical methods tend to be most often employed, other complementary techniques are increasingly valuable. In particular, laser flash photolysis and photoacoustic calorimetry provide independent measures of kinetics and thermodynamics of molecules and ion radicals. As most readers will not be familiar with all of these techniques, they will be briefly reviewed. In addition, the use of convolution voltammetry for the determination of electrode kinetics is discussed in more detail as this technique is not routinely used even by most electrochemists. Throughout this chapter we will reference all electrode potentials to the saturated calomel electrode and energies are reported in kcal mol. ... [Pg.92]


See other pages where Kinetic methods flash photolysis is mentioned: [Pg.511]    [Pg.511]    [Pg.8]    [Pg.1968]    [Pg.2115]    [Pg.2946]    [Pg.2966]    [Pg.512]    [Pg.512]    [Pg.514]    [Pg.321]    [Pg.124]    [Pg.323]    [Pg.37]    [Pg.71]    [Pg.84]    [Pg.124]    [Pg.178]    [Pg.128]    [Pg.175]    [Pg.18]    [Pg.22]    [Pg.24]    [Pg.183]    [Pg.71]    [Pg.120]    [Pg.335]    [Pg.89]    [Pg.184]    [Pg.24]    [Pg.486]    [Pg.164]    [Pg.392]    [Pg.9]    [Pg.10]    [Pg.247]   
See also in sourсe #XX -- [ Pg.294 , Pg.310 ]




SEARCH



Flash method

Flash photolysis

Flash photolysis methods

Kinetic flash photolysis

Kinetic methods

Kinetics flash photolysis

Kinetics method

Photolysis kinetics

© 2024 chempedia.info