Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Key enzymes

Biosynthesis of Tea Flavonoids. The pathways for the de novo biosynthesis of flavonoids in both soft and woody plants (Pigs. 3 and 4) have been generally elucidated and reviewed in detail (32,51). The regulation and control of these pathways in tea and the nature of the enzymes involved in synthesis in tea have not been studied exhaustively. The key enzymes thought to be involved in the biosynthesis of tea flavonoids are 5-dehydroshikimate reductase (52), phenylalanine ammonia lyase (53), and those associated with the shikimate/arogenate pathway (52). At least 13 enzymes catalyze the formation of plant flavonoids (Table 4). [Pg.368]

Firing. A hot-air oven having forced circulation in a countercurrent mode is used to dry the fermented tea leaves and inactivates the key enzymes required for fermentation. The firing process generally occurs over an 18—20-min period, which is optimum for normal process efficiencies. [Pg.372]

The key enzyme in this sequence, isopenicillin N synthase (IPNS), has been purified from E. coli (59) and the recombinant enzyme shown to be a single polypeptide of 336 amino acids containing two cysteines, numbers 106 and 255 from the /V-teiminus, and probably a ferrous ion in a nonheme environment. The enzyme has been crystallized and studies undertaken to obtain suitably sized crystals for diffraction studies. [Pg.84]

For many years hemoglobin was the only allosteric protein whose stereochemical mechanism was understood in detail. However, more recently detailed structural information has been obtained for both the R and the T states of several enzymes as well as one genetic repressor system, the trp-repressor, described in Chapter 8. We will here examine the structural differences between the R and the T states of a key enzyme in the glycolytic pathway, phosphofructokinase. [Pg.114]

Figure 6.24 The function of the enzyme phosphofructokinase. (a) Phosphofructokinase is a key enzyme in the gycolytic pathway, the breakdown of glucose to pyruvate. One of the end products in this pathway, phosphoenolpyruvate, is an allosteric feedback inhibitor to this enzyme and ADP is an activator, (b) Phosphofructokinase catalyzes the phosphorylation by ATP of fructose-6-phosphate to give fructose-1,6-bisphosphate. (c) Phosphoglycolate, which has a structure similar to phosphoenolpyruvate, is also an inhibitor of the enzyme. Figure 6.24 The function of the enzyme phosphofructokinase. (a) Phosphofructokinase is a key enzyme in the gycolytic pathway, the breakdown of glucose to pyruvate. One of the end products in this pathway, phosphoenolpyruvate, is an allosteric feedback inhibitor to this enzyme and ADP is an activator, (b) Phosphofructokinase catalyzes the phosphorylation by ATP of fructose-6-phosphate to give fructose-1,6-bisphosphate. (c) Phosphoglycolate, which has a structure similar to phosphoenolpyruvate, is also an inhibitor of the enzyme.
Burnell, J. N., and Hatch, M. D., 1985. Light-dark modnladon of leaf pyruvate, P[ dikinase. Trends in Biochemical Sciences 10 288-291. Regnladon of a key enzyme in C4 CO9 fixation. [Pg.741]

Squalene epoxidase, a key enzyme in the biosynthesis of cholesterol (9), epoxidizes one face of one of the three different olefins in squalene (7) to give squalene epoxide (8), which then cyclizes eventually to give cholesterol (9) (Scheme 1). The AD of squalene (7)... [Pg.689]

Production of phenylalanine starts after depletion of tyrosine at about 6 hours. This is logical since the micro-oiganism needs a certain amount of tyrosine, for example to synthesise key enzymes, but synthesis of L-phenylalanine is feedback regulated if tyrosine is present. [Pg.255]

Ralitrexed is a folate analog with greater selectivity. It easily crosses the cell membrane and undergoes polyglutamation. Within tissues, ralitrexed may be stored up to 29 days. It directly inhibits thymidylate synthase, the key enzyme for synthesizing thymidine triphosphate (TTP). The drug has been described to induce apoptosis in tumor cells. Ralitrexed is used for the treatment of colon carcinomas. [Pg.148]

Dicer represents the key enzyme in the RNAi pathway. Dicer is also known as Helicase with RNAse motif, heRNA, Helicase-moi, K12H4.8-like, or KIAA0928. Dicer produces cleaves long double-stranded RNA into small pieces of about 21-23 nucleotides. These so-called siRNA duplexes produced by the action of Dicer contain 5 -phosphates and free 3 -hydroxylgroups... [Pg.426]

GSK3 phosphorylates glycogen synthase (GS), the key enzyme for glycogen synthesis which builds up the... [Pg.556]

Inosine monophosphate dehydrogenase (EVDPDH) is a key enzyme of purine nucleotide biosynthesis. Purine synthesis in lymphocytes exclusively depends on the de novo synthesis, whereas other cells can generate purines via the so-called salvage pathway. Therefore, IMPDH inhibitors preferentially suppress DNA synthesis in activated lymphocytes. [Pg.619]

The active metabolite of leflunomide, the ring-opened drug A771726, inhibits dihydroorotate dehydrogenase (DHOD) which is the key enzyme of the de novo pyrimidine synthesis. Inhibition of synthesis stops proliferation of activated lymphocytes. The leflunomide derivative FK778 which shows similar therapeutic efficacy but shorter half-life is investigated in clinical trials. [Pg.619]

Inosine monophosphate dehydrogenase (IMPDH) is the key enzyme of purine nucleotide biosynthesis. Proliferation of activated lymphocytes dq ends on rapid de novo production of purine nucleotides for DNA synthesis. [Pg.622]

When induced in macrophages, iNOS produces large amounts of NO which represents a major cytotoxic principle of those cells. Due to its affinity to protein-bound iron, NO can inhibit a number of key enzymes that contain iron in their catalytic centers. These include ribonucleotide reductase (rate-limiting in DNA replication), iron-sulfur cluster-dependent enzymes (complex I and II) involved in mitochondrial electron transport and cis-aconitase in the citric acid cycle. In addition, higher concentrations of NO,... [Pg.863]

Protein kinase A (PKA) is a cyclic AMP-dependent protein kinase, a member of a family of protein kinases that are activated by binding of cAMP to their two regulatory subunits, which results in the release of two active catalytic subunits. Targets of PKA include L-type calcium channels (the relevant subunit and site of phosphorylation is still uncertain), phospholam-ban (the regulator of the sarcoplasmic calcium ATPase, SERCA) and key enzymes of glucose and lipid metabolism. [Pg.979]

Xanthine oxidase (XOD) is the key enzyme in purine catabolism. XOD catalyses the conversion ofhypoxan-thine to xanthine and of xanthine to uric acid, respectively. The uricostatic drug allopurinol and its major metabolite alloxanthine (oxypurinol) inhibit xanthine oxidase. [Pg.1323]

The elucidation of the crystal structures of two high-spin EPR proteins has shown that the proposals for novel Fe-S clusters are not without substance. Two, rather than one novel Fe-S cluster, were shown to be present in nitrogenase, the key enzyme in the biotic fixation of molecular nitrogen 4, 5). Thus the FeMoco-cofactor comprises two metal clusters of composition [4Fe-3S] and [lMo-3Fe-3S] bridged by three inorganic sulfur atoms, and this is some 14 A distant from the P-cluster, which is essentially two [4Fe-4S] cubane moieties sharing a corner. The elucidation of the crystal structure of the Fepr protein (6) provides the second example of a high-spin EPR protein that contains yet another unprecedented Fe-S cluster. [Pg.221]

This key enzyme of the dissimilatory sulfate reduction was isolated from all Desulfovibrio strains studied until now 135), and from some sulfur oxidizing bacteria and thermophilic Archaea 136, 137). The enzymes isolated from sulfate-reducing bacteria contain two [4Fe-4S] clusters and a flavin group (FAD) as demonstrated by visible, EPR, and Mossbauer spectroscopies. With a total molecular mass ranging from 150 to 220 kDa, APS reductases have a subunit composition of the type 012)32 or 02)3. The subunit molecular mass is approximately 70 and 20 kDa for the a and )3 subunits, respectively. Amino-acid sequence data suggest that both iron-sulfur clusters are located in the (3 subunit... [Pg.382]

An intriguing stress-induced alteration in gene expression occurs in a succulent plant, Mesembryanthemum crystallinum, which switches its primary photosynthetic CO2 fixation pathway from C3 type to CAM (Crassulacean acid metabolism) type upon salt or drought stress (Winter, 1974 Chapter 8). Ostrem et al. (1987) have shown that the pathway switching involves an increase in the level of mRNA encoding phosphoenol-pyruvate carboxylase, a key enzyme in CAM photosynthesis. [Pg.165]

In many cases, the racemization of a substrate required for DKR is difficult As an example, the production of optically pure cc-amino acids, which are used as intermediates for pharmaceuticals, cosmetics, and as chiral synfhons in organic chemistry [31], may be discussed. One of the important methods of the synthesis of amino acids is the hydrolysis of the appropriate hydantoins. Racemic 5-substituted hydantoins 15 are easily available from aldehydes using a commonly known synthetic procedure (Scheme 5.10) [32]. In the next step, they are enantioselectively hydrolyzed by d- or L-specific hydantoinase and the resulting N-carbamoyl amino acids 16 are hydrolyzed to optically pure a-amino acid 17 by other enzymes, namely, L- or D-specific carbamoylase. This process was introduced in the 1970s for the production of L-amino acids 17 [33]. For many substrates, the racemization process is too slow and in order to increase its rate enzymes called racemases are used. In processes the three enzymes, racemase, hydantoinase, and carbamoylase, can be used simultaneously this enables the production of a-amino acids without isolation of intermediates and increases the yield and productivity. Unfortunately, the commercial application of this process is limited because it is based on L-selective hydantoin-hydrolyzing enzymes [34, 35]. For production of D-amino acid the enzymes of opposite stereoselectivity are required. A recent study indicates that the inversion of enantioselectivity of hydantoinase, the key enzyme in the... [Pg.103]

Induction Repression of Key Enzyme Synthesis Requires Several Hours... [Pg.155]

The ketone bodies (acetoacetate, 3-hydroxybutyrate, and acetone) are formed in hepatic mitochondria when there is a high rate of fatty acid oxidation. The pathway of ketogenesis involves synthesis and breakdown of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) by two key enzymes, HMG-CoA synthase and HMG-GoA lyase. [Pg.189]


See other pages where Key enzymes is mentioned: [Pg.296]    [Pg.556]    [Pg.287]    [Pg.131]    [Pg.33]    [Pg.85]    [Pg.283]    [Pg.633]    [Pg.242]    [Pg.51]    [Pg.135]    [Pg.137]    [Pg.160]    [Pg.228]    [Pg.379]    [Pg.1091]    [Pg.219]    [Pg.201]    [Pg.29]    [Pg.14]    [Pg.52]    [Pg.76]    [Pg.49]    [Pg.133]    [Pg.157]    [Pg.161]    [Pg.179]   
See also in sourсe #XX -- [ Pg.80 ]




SEARCH



Enzyme, "lock-and-key

Enzymes lock and key” model

Key Building Blocks via Enzyme-Mediated Synthesis

Key Enzymes Regulating Rate-Limiting Steps of Glucose Metabolism

Key Enzymes in Metabolism of D-Fructose

Key types and properties of enzyme-responsive polymers

Lock-and-key model, of enzyme action

Metabolic Pathways and Key Enzyme of Bioisoprene

Polyester (PHA) Synthases are the Key Enzymes

Regulatory Enzymes Occupy Key Positions in Pathways

© 2024 chempedia.info