Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketones Wolff rearrangement

Thiazole acid chlorides react with diazomethane to give the diazoketone. The later reacts with alcoholic hydrogen chloride to give chloroacetylthiazole (Scheme 16). However, the Wolff rearrangement of the diazoketone is not consistently satisfactory (82). Heated with alcohol in the presence of copper oxide the 5-diazomethylketone (24) gives ethyl 5-thiazoleacetate (25) instead of the expected ethoxymethyl 5-thiazolyl ketone (Scheme 17) (83). [Pg.529]

Photochemical Wolff rearrangement of 2-diazo-3-ketones, though not widely used as a source of A-norsteroids, is discussed in section V in connection with the mechanism of the important photochemical synthesis of D-norsteroids. Photochemical rearrangement of epoxy ketones is a source of A-nosteroids these rearrangements are discussed in chapter 13. Other photochemical routes to A-norsteroids are known." " ... [Pg.429]

The diazo ketone 3, when treated with silver oxide as catalyst, decomposes into ketocarbene 5 and dinitrogen Na. This decomposition reaction can also be achieved by heating or by irradiation with uv-light. The ketocarbene undergoes a Wolff rearrangement to give a ketene 6 ... [Pg.17]

In this section we first discuss photolytic reactions of arenediazonium salts and report on quinone diazides at the end of the section in the context of imaging technology. Diazoalkenes, non-quinonoid diazo ketones, and the Wolff rearrangement are treated in the book on aliphatic diazo compounds (Zollinger, 1995, Chap. 8). [Pg.281]

The diazo ketone can exist in two conformations, called s-(E) and s-(Z). Studies have shown that Wolff rearrangement takes place preferentially from the s-(Z) conformation. [Pg.1407]

Pyrolysis of carboxylic acids Dehydrohalogenation of acyl halides Dehalogenation of a-halo acyl halides Rearrangement of diazo ketones (Wolff)... [Pg.1677]

There are several reactions that are conceptually related to carbene reactions but do not involve carbene, or even carbenoid, intermediates. Usually, these are reactions in which the generation of a carbene is circumvented by a concerted rearrangement process. Important examples of this type are the thermal and photochemical reactions of a-diazo ketones. When a-diazo ketones are decomposed thermally or photochemically, they usually rearrange to ketenes, in a reaction known as the Wolff rearrangement.232... [Pg.941]

The main synthetic application of the Wolff rearrangement is for the one-carbon homologation of carboxylic acids.242 In this procedure, a diazomethyl ketone is synthesized from an acyl chloride. The rearrangement is then carried out in a nucleophilic solvent that traps the ketene to form a carboxylic acid (in water) or an ester (in alcohols). Silver oxide is often used as a catalyst, since it seems to promote the rearrangement over carbene formation.243... [Pg.943]

Wolff rearrangements were also observed when most of the same acylsi-lyldiazoalkanes were photolyzed in acetone instead of benzene.21 The ketenes 185 resulting from a 1,3-methyl migration of the silene were detected in addition to the expected ene product 186 derived from the reaction of the silene with acetone (or other enolizable ketones) (Eq. 58). When R = Ad, only the cyclic siloxatene 187 was formed under the same... [Pg.147]

The formal relationship between cyclopropenone and an a,a -biscarbene of a ketone (R—C—CO—C—R ) initiated investigations on photolytic and Ag-catalyzed decomposition of a, a -bisdiazo dibenzyl ketone (49) (Trost50 ). Indeed, diphenyl-cyclopropenone was formed in addition to other products (52 and tolane) derived from it furthermore, products resulting from solvent insertion and Wolff rearrangement of the monocarbene 50 were isolated (51) ... [Pg.17]

The use of copper as a catalyst in carbenoid transfer has its roots in the Amdt-Eistert reaction, Eq. 1 (3). Although the original 1935 paper describes the Wolff rearrangement of a-diazo ketones to homologous carboxylic acids using silver, the authors mention that copper may be substituted in this reaction. In 1952, Yates (4) demonstrated that copper bronze induces insertion of diazo compounds into the X-H bond of alcohols, amines, and phenols without rearrangement, Eq. 2. Yates proposal of a distinct metal carbenoid intermediate formed the basis of the currently accepted mechanistic construct for the cyclopropanation reaction using diazo compounds. [Pg.4]

FORMATION AND PHOTOCHEMICAL WOLFF REARRANGEMENT OF CYCLIC a-DIAZO KETONES D-NORANDROST-5-EN-3 -0L-16-CARB0XYLIC ACIDS, 52, 53 FORMIC ACID, AZIDO—, tert-BUTYL ESTER, 50, 9 Formylation, with acetic formic anhydride, 50, 2 p-FORMYLBENZENESULFONAMIDE, ... [Pg.130]

The Wolff rearrangement is well known as a reaction of diazo ketones, i.e. of diazoalkanes with a carbonyl group in a-position. Reaction 34 demonstrates that diazotized aminonaphthols are mesomeric with naphthoquinone diazides (48b) and that they have therefore also the character of quinonoid diazo ketones (see also Section II.C of this chapter). Wolff rearrangements take place also thermally and catalyzed by silver ions. [Pg.658]

FORMATION AND PHOTOCHEMICAL WOLFF REARRANGEMENT OF CYCLIC a-DIAZO KETONES D-NORANDROST-5-EN-3P-OL-16-CARBOXYLIC ACIDS... [Pg.107]

Danheiser et al. developed a new aromatic annotation methodology for the total s)mthesis of hyellazole (245) by irradiation of the heteroaryl a-diazo ketone 675 in the presence of 1-methoxypropyne (590). This reaction proceeds via the photochemical Wolff rearrangement of the heteroaryl a-diazo ketone 675 to generate a vinylketene, followed by a cascade of three pericyclic reactions. [Pg.227]

The Dauben-Walker approach has yielded the smallest and most strained fenestrane known to date Following the intramolecular Wadsworth-Enunons cyclization of 443 which also epimerizes the butenyl sidechain to the more stable exo configuration, intramolecular photocycloaddition was smoothly accomplished to provide 444. Wolff-ELishner reduction of this ketone afforded the Cj-symmetric hydrocarbon 445. Application of the photochemical Wolff rearrangement to a-diazo ketone 446 p,ve 447. [Pg.24]

It has been demonstrated that x-diazo ketones, e.g. 8, may photochemically equilibrate with their isomeric a-oxodiazirines, e.g. 9, but the Latter upon irradiation also undergo Wolff rearrangement with ring contraction.46... [Pg.322]


See other pages where Ketones Wolff rearrangement is mentioned: [Pg.527]    [Pg.528]    [Pg.529]    [Pg.529]    [Pg.527]    [Pg.528]    [Pg.529]    [Pg.529]    [Pg.120]    [Pg.126]    [Pg.193]    [Pg.302]    [Pg.1250]    [Pg.1407]    [Pg.135]    [Pg.162]    [Pg.565]    [Pg.228]    [Pg.825]    [Pg.602]    [Pg.120]    [Pg.126]    [Pg.126]    [Pg.193]    [Pg.195]    [Pg.317]    [Pg.978]    [Pg.1083]   
See also in sourсe #XX -- [ Pg.262 ]

See also in sourсe #XX -- [ Pg.532 , Pg.533 ]




SEARCH



Ketones rearrangement

Rearrangements Wolff rearrangement

Wolff

Wolff rearrangement

© 2024 chempedia.info