Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketones, reductive cleavage sulfonation

Among other methods for the preparation of alkylated ketones are (1) the Stork enamine reaction (12-18), (2) the acetoacetic ester synthesis (10-104), (3) alkylation of p-keto sulfones or sulfoxides (10-104), (4) acylation of CH3SOCH2 followed by reductive cleavage (10-119), (5) treatment of a-halo ketones with lithium dialkyl-copper reagents (10-94), and (6) treatment of a-halo ketones with trialkylboranes (10-109). [Pg.555]

Scheme 7 Ozonization of alcohol (79) followed by treatment of the ozonide with Me2S afforded hydroxy ketones (80), whose acetate derivatives was converted to indenone (83). Hydroxy ketone (84), prepared from (83) was converted to compound (85), whose acetate on oxidation gave diol (87). Its transformation to butenolide (88) was easily carried out. This on oxidation and reduction produced hydroxy phytuberin lactone (89), which was converted to its sulfonyl derivative. Reductive removal of the sulfonate group yielded the cyclopropane derivative (91), which on subjection to reductive cleavage with lithium in liq. NH3 yielded phyberin lactone (92) and deacetyl phytuberin lactone (93)... Scheme 7 Ozonization of alcohol (79) followed by treatment of the ozonide with Me2S afforded hydroxy ketones (80), whose acetate derivatives was converted to indenone (83). Hydroxy ketone (84), prepared from (83) was converted to compound (85), whose acetate on oxidation gave diol (87). Its transformation to butenolide (88) was easily carried out. This on oxidation and reduction produced hydroxy phytuberin lactone (89), which was converted to its sulfonyl derivative. Reductive removal of the sulfonate group yielded the cyclopropane derivative (91), which on subjection to reductive cleavage with lithium in liq. NH3 yielded phyberin lactone (92) and deacetyl phytuberin lactone (93)...
Unlike the corresponding phosphonium salts, addition of sulfonium salts to aldehydes results, not in the alkene products, but in the formation of epoxides (see Section 1.1.5.2). However, sulfones can be used to prepare alkenes, by way of the a-metallo derivatives, in what is termed the Julia olefination (alkenylation). Addition of the organometallic species to an aldehyde or ketone gives a p-hydroxy sulfone which, in the form of its 0-acyl or 0-sulfonyl derivative, undergoes reductive cleavage with, for example, sodium amalgam in methanol to form the alkene. The reaction is regioselective and can be used to prepare mono-, di- and trisubstituted alkenes (2.91). [Pg.144]

Graphite reacts with alkali metals - potassium, cesium and rubidium - to form lamellar compounds with different stoichiometries. The most widely known intercalate is the potassium-graphite which has the stoichiometry of CgK. In this intercalate the space between the graphite layers is occupied by K atoms. CgK functions as a reducing agent in various reactions such as reduction of double bonds in a,fl-unsaturated ketones [19], carboxylic acids and Schiff bases alkylation of nitriles [20], esters and imines [21] reductive cleavage of carbon-sulfur bonds in vinylic and allylic sulfones [22]. The detailed reaction mechanism of CgK is not known, and the special properties which are ascribed to the intercalate come either from the equilibrium between K+/K [23], or topochemical observations (the layer structure) [24]. [Pg.568]

Q , 8-Ethylenic sulfones exhibit a behavior that could be considered as specific and totally different from that of Q , 8-ethylenic ketones or nitriles. Thus, with the present series, there is practically no case of dimerization or double-bond saturation. This seems to be because of the fact that reduction of compounds of this series cannot be completed neither in acidic nor in aqueous solutions because a fast cleavage occurs at the level of the anion radical. [Pg.265]

Ketones containing sulfur or nitrogen atoms bound to a-carbons suffer carbon-sulfur or carbon-nitrogen bond cleavage under the conditions of the Clemmensen reduction [159, 864 (p. 118). A ketosulfone was reduced to a sulfone-alcohol with zinc in refluxing 80% acetic acid in 70% yield [920]. [Pg.126]


See other pages where Ketones, reductive cleavage sulfonation is mentioned: [Pg.519]    [Pg.519]    [Pg.102]    [Pg.812]    [Pg.977]    [Pg.984]    [Pg.529]    [Pg.529]    [Pg.529]    [Pg.267]    [Pg.1344]    [Pg.103]    [Pg.200]    [Pg.113]    [Pg.187]    [Pg.168]    [Pg.728]    [Pg.155]    [Pg.33]    [Pg.187]    [Pg.224]    [Pg.13]    [Pg.4928]   
See also in sourсe #XX -- [ Pg.791 ]




SEARCH



Ketones cleavage

Ketones sulfonation

Reduction sulfonation

Sulfonates reduction

Sulfone reduction

Sulfones cleavage

Sulfones ketones

Sulfones reduction

Sulfonic cleavage

Sulfonic reduction

© 2024 chempedia.info