Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketones Birch reduction

Selective reduction of a benzene ring (W. Grimme, 1970) or a C C double bond (J.E. Cole, 1962) in the presence of protected carbonyl groups (acetals or enol ethers) has been achieved by Birch reduction. Selective reduction of the C—C double bond of an a,ft-unsaturated ketone in the presence of a benzene ring is also possible in aprotic solution, because the benzene ring is redueed only very slowly in the absence of a proton donor (D. Caine, 1976). [Pg.104]

A carbonyl group cannot be protected as its ethylene ketal during the Birch reduction of an aromatic phenolic ether if one desires to regenerate the ketone and to retain the 1,4-dihydroaromatic system, since an enol ether is hydrolyzed by acid more rapidly than is an ethylene ketal. 1,4-Dihydro-estrone 3-methyl ether is usually prepared by the Birch reduction of estradiol 3-methyl ether followed by Oppenauer oxidation to reform the C-17 carbonyl function. However, the C-17 carbonyl group may be protected as its diethyl ketal and, following a Birch reduction of the A-ring, this ketal function may be hydrolyzed in preference to the 3-enol ether, provided carefully controlled conditions are employed. Conditions for such a selective hydrolysis are illustrated in Procedure 4. [Pg.11]

Metal-ammonia solutions reduce conjugated enones to saturated ketones and reductively cleave a-acetoxy ketones i.e. ketol acetates) to the unsubstituted ketones. In both cases the actual reduction product is the enolate salt of a saturated ketone this salt resists further reduction. If an alcohol is present in the reaction mixture, the enolate salt protonates and the resulting ketone is reduced further to a saturated alcohol. Linearly or cross-conjugated dienones are reduced to enones in the absence of a proton donor other than ammonia. The Birch reduction of unsaturated ketones to saturated alcohols was first reported by Wilds and Nelson using lithium as the reducing agent. This metal has been used almost exclusively by subsequent workers for the reduction of both unsaturated and saturated ketones. Calcium has been preferred for the reductive cleavage of ketol acetates. [Pg.27]

Reduction of a conjugated enone to a saturated ketone requires the addition of two electrons and two protons. As in the case of the Birch reduction of aromatic compounds, the exact order of these additions has been the subject of study and speculation. Barton proposed that two electrons add initially giving a dicarbanion of the structure (49) which then is protonated rapidly at the / -position by ammonia, forming the enolate salt (50) of the saturated ketone. Stork later suggested that the radical-anion (51), a one electron... [Pg.27]

For the reduction of conjugated enones to saturated alcohols, Procedure 5 (section V) may be modified by adding methanol in place of ammonium chloride a sufficient excess of lithium is present to effect reduction of the intermediate saturated ketone to the alcohol. Procedure 2 (section V) for effecting Birch reductions is also useful for reduction of conjugated enones to saturated alcohols. Thus, 17-ethyl-19-nortestosterone affords crude 17a-ethyl-5a-estrane-3) ,17) -diol of mp 174-181°, reported mp 181-183°, in quantitative yield. [Pg.44]

The crude ketal from the Birch reduction is dissolved in a mixture of 700 ml ethyl acetate, 1260 ml absolute ethanol and 31.5 ml water. To this solution is added 198 ml of 0.01 Mp-toluenesulfonic acid in absolute ethanol. (Methanol cannot be substituted for the ethanol nor can denatured ethanol containing methanol be used. In the presence of methanol, the diethyl ketal forms the mixed methyl ethyl ketal at C-17 and this mixed ketal hydrolyzes at a much slower rate than does the diethyl ketal.) The mixture is stirred at room temperature under nitrogen for 10 min and 56 ml of 10% potassium bicarbonate solution is added to neutralize the toluenesulfonic acid. The organic solvents are removed in a rotary vacuum evaporator and water is added as the organic solvents distill. When all of the organic solvents have been distilled, the granular precipitate of 1,4-dihydroestrone 3- methyl ether is collected on a filter and washed well with cold water. The solid is sucked dry and is dissolved in 800 ml of methyl ethyl ketone. To this solution is added 1600 ml of 1 1 methanol-water mixture and the resulting mixture is cooled in an ice bath for 1 hr. The solid is collected, rinsed with cold methanol-water (1 1), air-dried, and finally dried in a vacuum oven at 60° yield, 71.5 g (81 % based on estrone methyl ether actually carried into the Birch reduction as the ketal) mp 139-141°, reported mp 141-141.5°. The material has an enol ether assay of 99%, a residual aromatics content of 0.6% and a 19-norandrost-5(10)-ene-3,17-dione content of 0.5% (from hydrolysis of the 3-enol ether). It contains less than 0.1 % of 17-ol and only a trace of ketal formed by addition of ethanol to the 3-enol ether. [Pg.52]

Reactions of 3- and 4-piperidone-derived enamines with a dienester gave intermediates which could be dehydrogenated to tetrahydroquinolines and tetrahydroisoquinolines (678). The methyl vinyl ketone annelation of pyrrolines was extended to an erythrinan synthesis (679). Perhydrophenan-threnones were obtained from 1-acetylcyclohexene and pyrrolidinocyclo-hexene (680) or alternatively from Birch reduction and cyclization of a 2-pyridyl ethyl ketone intermediate, which was formed by alkylation of an enamine with a 2-vinylpyridine (681). [Pg.373]

Direct Electron Transfer. We have already met some reactions in which the reduction is a direct gain of electrons or the oxidation a direct loss of them. An example is the Birch reduction (15-14), where sodium directly transfers an electron to an aromatic ring. An example from this chapter is found in the bimolecular reduction of ketones (19-55), where again it is a metal that supplies the electrons. This kind of mechanism is found largely in three types of reaction, (a) the oxidation or reduction of a free radical (oxidation to a positive or reduction to a negative ion), (b) the oxidation of a negative ion or the reduction of a positive ion to a comparatively stable free radical, and (c) electrolytic oxidations or reductions (an example is the Kolbe reaction, 14-36). An important example of (b) is oxidation of amines and phenolate ions ... [Pg.1508]

Ketone (27) was needed for a synthesis of the boll weevil pheromone (28), Suggest a synthesis of (27) using Birch reduct ion,... [Pg.428]

The isolated double bonds in the dihydro product are much less easily reduced than the conjugated ring, so the reduction stops at the dihydro stage. Alkyl and alkoxy aromatics, phenols, and benzoate anions are the most useful reactants for Birch reduction. In aromatic ketones and nitro compounds, the substituents are reduced in preference to the Dissoiving-Memi... [Pg.437]

Reduction of acyclic a-methyl ketones. Reduction of ketones such as 1 with hydrides such as LiAlH, results in the anti or syn isomer as the predominant product. Bouvault-Blanc reduction, Birch reduction, and Sml2 reduction all favor anti Cram... [Pg.285]

Birch reduction of the norgetrel intermediate 5 oil owed by hydrolysis of the enol ether gives the enone oxidation of the alcohol at 17 leads to dione 7. Fermentation of that intermediate in the presence of the mold PeniciIlium raistricky serves to introduce a hydroxyl group at the 15 position W. Acetal formation with neopentyl glycol affords the protected ketone which consists of a mixture of the A and A isomers (2 ) hindrance at position 17 ensures selective reaction of the 3 ketone. The... [Pg.1133]

The superfluous bromine is then removed by reduction with zinc in acetic acid (26-1). The 20 ketone is next protected against the strongly reducing conditions in the subsequent step by conversion to the ethylene glycol acetal (26-2). Birch reduction with lithium in liquid ammonia in the presence of ethanol proceeds as usual to the dihydrobenzene (26-3). Treatment of this last product with mineral acid serves to hydrolyze both the enol ether at the 3 position and the acetal at the... [Pg.136]

The core tricyclic ketone 1 was assembled by Birch reduction of 2,5-dimethoxybenzoic acid, followed by alkylation with 3-methoxybenzyl bromide, to give 4. Acid-catalyzed electrophilic cyclization of 4 gave the tricyclic ketone 5, which on decarboxylation and protection gave I. [Pg.11]

Direct electron transfer We have already met some reactions in which the reduction is a direct gain of electrons or the oxidation a direct loss of them. An example is the Birch reduction (5-10), where sodium directly transfers an electron to an aromatic ring. An example from this chapter is found in the bimolecular reduction of ketones (9-62), where again it is... [Pg.1159]

Thienyimethanol (360a) underwent allylic rearrangement to 4-hydroxy-2//-pyran (2) with oxalic acid at 20°C for 6 days.341 2-Thienylmethylamine (360b) with nitrous acid (Demyanov reaction) gave a mixture of 360a and 2.3 An 86% yield of a mixture of 2,6-di-te/ -bu tyl-2//- and 4//-thiopyrans 362 and 363 was obtained when 2,5-dihydrothiophene ketone 361 (readily accessible by Birch reduction of 2-pivaIoyl-5-ter/-butylthiophene) was reduced with zinc and sodium hydroxide in the presence of trimethylsilyl chloride.286... [Pg.227]


See other pages where Ketones Birch reduction is mentioned: [Pg.141]    [Pg.382]    [Pg.141]    [Pg.382]    [Pg.123]    [Pg.103]    [Pg.278]    [Pg.210]    [Pg.439]    [Pg.60]    [Pg.10]    [Pg.24]    [Pg.38]    [Pg.46]    [Pg.171]    [Pg.167]    [Pg.108]    [Pg.147]    [Pg.152]    [Pg.222]    [Pg.186]    [Pg.653]    [Pg.658]    [Pg.124]    [Pg.129]    [Pg.132]    [Pg.124]    [Pg.14]    [Pg.21]   
See also in sourсe #XX -- [ Pg.508 ]

See also in sourсe #XX -- [ Pg.32 ]




SEARCH



Birch

Birch reduction

Birching

© 2024 chempedia.info