Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketone enolates Michael additions

Enamines behave in much the same way as enolate ions and enter into many of the same kinds of reactions. In the Stork reaction, for example, an enamine adds to an aqQ-unsaturated carbonyl acceptor in a Michael-like process. The initial product is then hydrolyzed by aqueous acid (Section 19.8) to yield a 1,5-dicarbonyi compound. The overall reaction is thus a three-step sequence of (11 enamine formation from a ketone, (2) Michael addition to an a,j3-unsaturated carbonyl compound, and (3) enamine hydrolysis back to a ketone. [Pg.897]

Disilylation of enones.1 In the presence of Pd[P(C6H5),]4, this disilane undergoes 1,4-addition to a,p-enones to give -y-(phenyldichlorosilyl) silyl enol ethers, which can be converted into lithium enolates by exchange with methyllithium. The reaction can provide 3-hydroxy ketones. The Michael addition is enantioselective when catalyzed by Cl2Pd[( + )-BINAP] (12, 53-57). [Pg.127]

Robinson Annulation Sequential Michael addition/aldol condensation between a ketone enolate and an alkyl vinyl ketone (i.e. MVK) to give a cyclohex-2-en-l-one... [Pg.103]

The Pd enolates also undergo intramolecular Michael addition when an enone of suitable size is present in the allyl d-keto ester 744[465]. The main product is the saturated ketone 745, hut the unsaturated ketone 746 and ally-lated product 747 are also obtained as byproducts. The Pd-catalyzed Michael... [Pg.392]

A synthetically useful reaction known as the Michael reaction, or Michael addition, involves nucleophilic addition of carbanions to a p unsaturated ketones The most common types of carbanions used are enolate 10ns derived from p diketones These enolates are weak bases (Section 18 6) and react with a p unsaturated ketones by conjugate addition... [Pg.779]

Stabilized anions exhibit a pronounced tendency to undergo conjugate addition to a p unsaturated carbonyl compounds This reaction called the Michael reaction has been described for anions derived from p diketones m Section 18 13 The enolates of ethyl acetoacetate and diethyl malonate also undergo Michael addition to the p carbon atom of a p unsaturated aldehydes ketones and esters For example... [Pg.901]

The reaction of a cyclic ketone—e.g. cyclohexanone 1—with methyl vinyl ketone 2 resulting in a ring closure to yield a bicyclic a ,/3-unsaturated ketone 4, is called the Robinson annulation This reaction has found wide application in the synthesis of terpenes, and especially of steroids. Mechanistically the Robinson annulation consists of two consecutive reactions, a Michael addition followed by an Aldol reaction. Initially, upon treatment with a base, the cyclic ketone 1 is deprotonated to give an enolate, which undergoes a conjugate addition to the methyl vinyl ketone, i.e. a Michael addition, to give a 1,5-diketone 3 ... [Pg.240]

Four different orientations are possible when the enantiofaces of (E)- and (Z)-enolates and an ( )-enone combine via a closed transition state, in which the olefinic moieties of the donor and the acceptor are in a syn arrangement. It should be emphasized that, a further four enan-tiomorphous orientations of A-D are possible leading to the enantiomers 2 and 3. On the basis of extensive studies of Michael additions of the lithium enolates of esters (X = OR) and ketones (X = R) to enones (Y = R) it has been concluded ... [Pg.955]

The asymmetric Michael addition of chiral nonracemic ketone enolates has most frequently been used as part of the Robinson annulation methodology in the synthesis of natural products171-172. The enolates are then derived from carbocyclic chiral ketones such as (+)-nopinone, (-)-dihydrocarvone, or (-)-3-methylsabinaketone. [Pg.971]

The application of auxiliary control in the asymmetric Michael addition of chiral enolates derived from ketones is rare the only example known is the use of (27 ,37 )-2,3-butancdiol as an auxiliary. The ketal of (27 ,37 )-2,3-butanediol with 3-methyl-l,2-cyclohexanedione reacts with 3-buten-2-one using as base a catalytic amount of sodium ethoxide in ethanol195. [Pg.975]

Michael additions followed by further Michael additions have become popular reactions and are usually referred to as Michael Michael Induced Ring Closure (MIM1RC) reactions. A three component Michael-Michael-aldol reaction of ketone enolates with acrylates can be achieved, resulting in the formation of six-membered ring compounds with good efficiency and high diastereoselectivites319. [Pg.994]

Another example of a [4S+1C] cycloaddition process is found in the reaction of alkenylcarbene complexes and lithium enolates derived from alkynyl methyl ketones. In Sect. 2.6.4.9 it was described how, in general, lithium enolates react with alkenylcarbene complexes to produce [3C+2S] cycloadducts. However, when the reaction is performed using lithium enolates derived from alkynyl methyl ketones and the temperature is raised to 65 °C, a new formal [4s+lcj cy-clopentenone derivative is formed [79] (Scheme 38). The mechanism proposed for this transformation supposes the formation of the [3C+2S] cycloadducts as depicted in Scheme 32 (see Sect. 2.6.4.9). This intermediate evolves through a retro-aldol-type reaction followed by an intramolecular Michael addition of the allyllithium to the ynone moiety to give the final cyclopentenone derivatives after hydrolysis. The role of the pentacarbonyltungsten fragment seems to be crucial for the outcome of this reaction, as experiments carried out with isolated intermediates in the absence of tungsten complexes do not afford the [4S+1C] cycloadducts (Scheme 38). [Pg.87]

Thus the product in such cases can exist as two pairs of enantiomers. In a di-astereoselective process, one of the two pairs is formed exclusively or predominantly as a racemic mixture. Many such examples have been reported. In many of these cases, both the enolate and substrate can exist as (Z) or (E) isomers. With enolates derived from ketones or carboxylic esters, (E) enolates gave the syn pair of enantiomers (p. 146), while (Z) enolates gave the anti pair. Addition of chiral additives to the reaction, such as proline derivatives, or (—)-sparteine lead to product formation with good-to-excellent asynunetric induction. Ultrasound has also been used to promote asymmetric Michael reactions. Intramolecular versions of Michael addition are well known. ... [Pg.1023]

Domino transformations combining two consecutive anionic steps exist in several variants, but the majority of these reactions is initiated by a Michael addition [1]. Due to the attack of a nucleophile at the 4-position of usually an enone, a reactive enolate is formed which can easily be trapped in a second anionic reaction by, for example, another n,(5-urisalurated carbonyl compound, an aldehyde, a ketone, an inline, an ester, or an alkyl halide (Scheme 2.1). Accordingly, numerous examples of Michael/Michael, Michael/aldol, Michael/Dieckmann, as well as Michael/SN-type sequences have been found in the literature. These reactions can be considered as very reliable domino processes, and are undoubtedly of great value to today s synthetic chemist... [Pg.48]

Twofold Michael additions have been utilized by the groups of Spitzner [2] and Hagiwara [3] to construct substituted bicyclo[2.2.2]octane frameworks. In Hagiwara s approach towards valeriananoid A (2-6) [4], treatment of trimethylsily-enol ether 2-2, prepared from the corresponding oxophorone 2-1, and methyl acrylate (2-3) with diethylaluminum chloride at room temperature (r.t.) afforded the bicyclic compound 2-4 (Scheme 2.2). Its subsequent acetalization allowed the selective protection of the less-hindered ketone moiety to provide 2-5, which could be further transformed into valeriananoid A (2-6). [Pg.49]

This finding is also in agreement with another three-component Michael/aldol addition reaction reported by Shibasaki and coworkers [14]. Here, as a catalyst the chiral AlLibis[(S)-binaphthoxide] complex (ALB) (2-37) was used. Such hetero-bimetallic compounds show both Bronsted basicity and Lewis acidity, and can catalyze aldol [15] and Michael/aldol [14, 16] processes. Reaction of cyclopentenone 2-29b, aldehyde 2-35, and dibenzyl methylmalonate (2-36) at r.t. in the presence of 5 mol% of 2-37 led to 3-hydroxy ketones 2-38 as a mixture of diastereomers in 84% yield. Transformation of 2-38 by a mesylation/elimination sequence afforded 2-39 with 92 % ee recrystallization gave enantiopure 2-39, which was used in the synthesis of ll-deoxy-PGFla (2-40) (Scheme 2.8). The transition states 2-41 and 2-42 illustrate the stereochemical result (Scheme 2.9). The coordination of the enone to the aluminum not only results in its activation, but also fixes its position for the Michael addition, as demonstrated in TS-2-41. It is of importance that the following aldol reaction of 2-42 is faster than a protonation of the enolate moiety. [Pg.53]

Nitroalkenes react with lithium dianions of carboxylic acids or with hthium enolates at -100 °C, and subsequent treatment of the Michael adducts with aqueous acid gives y-keto acids or esters in a one-pot operation, respectively (Eq. 4.52).66 The sequence of Michael addition to nitroalkenes and Nef reaction (Section 6.1) provides a useful tool for organic synthesis. For example, the addition of carbanions derived from sulfones to nitroalkenes followed by the Nef reaction and elimination of the sulfonyl group gives a,P-unsaturated ketones (Eq. 4.53).67... [Pg.87]

The utilization of copper complexes (47) based on bisisoxazolines allows various silyl enol ethers to be added to aldehydes and ketones which possess an adjacent heteroatom e.g. pyruvate esters. An example is shown is Scheme 43[126]. C2-Symmetric Cu(II) complexes have also been used as chiral Lewis acids for the catalysis of enantioselective Michael additions of silylketene acetals to alkylidene malonates[127]. [Pg.32]

Michael additions of ketone enolates. The stereochemistry of Michael additions of lithium enolates of ketones to a,(3-enones is controlled by the geometry of the enolate. Addition of (Z)-enolates results in anti-products with high diaster-eoselectivity, which is not changed by addition of HMPT. Reaction of (E)-enolates is less stereoselective but tends to favor syn-selectivity, which can be enhanced by addition of HMPT. [Pg.176]

Four-component annelation to alkenolides. Posner et al. have reported a one-pot three-step annelation of cycloalkenones to provide, after oxidation, four-atom enlarged macrolides. Thus Michael addition of tributyltinlithium to cyclo-hexenone (1) and Michael addition of the resulting enolate to ethyl vinyl ketone followed by an aldol reaction results in cyclization to a bicyclic hemiketal (2), which is oxidized by Pb(OAc)4 to an unsaturated 10-membered lactone (3). [Pg.319]

It should be noted here that a regioselective control may also be exerted by just controlling the experimental conditions. Thus, working under strictly kinetic conditions (low temperature, absence of oxygen and slow addition of the ketone to an excess of a solution of an aprotic base) the less substituted enolate of carvomenthone can also be selectively generated and may be then submitted to different kind of reactions. However, reversible reactions like the Michael addition would equilibrate the reaction mixture to the thermodynamically more stable enolate. [Pg.326]

One problem in the anti-selective Michael additions of A-metalated azomethine ylides is ready epimerization after the stereoselective carbon-carbon bond formation. The use of the camphor imines of ot-amino esters should work effectively because camphor is a readily available bulky chiral ketone. With the camphor auxiliary, high asymmetric induction as well as complete inhibition of the undesired epimerization is expected. The lithium enolates derived from the camphor imines of ot-amino esters have been used by McIntosh s group for asymmetric alkylations (106-109). Their Michael additions to some a, p-unsaturated carbonyl compounds have now been examined, but no diastereoselectivity has been observed (108). It is also known that the A-pinanylidene-substituted a-amino esters function as excellent Michael donors in asymmetric Michael additions (110). Lithiation of the camphor... [Pg.774]


See other pages where Ketone enolates Michael additions is mentioned: [Pg.72]    [Pg.41]    [Pg.3]    [Pg.478]    [Pg.1222]    [Pg.114]    [Pg.569]    [Pg.439]    [Pg.50]    [Pg.829]    [Pg.831]    [Pg.225]    [Pg.61]    [Pg.110]    [Pg.242]    [Pg.162]    [Pg.863]   
See also in sourсe #XX -- [ Pg.1082 ]

See also in sourсe #XX -- [ Pg.5 ]

See also in sourсe #XX -- [ Pg.1082 ]

See also in sourсe #XX -- [ Pg.5 ]




SEARCH



Addition ketones

Enol ketones

Enolate Additions

Enolates Michael

Enolates Michael addition

Enols ketonization

Ketone enolate

Ketone enolates

Ketones Michael addition

Ketones enolization

Ketonization-enolization

Michael addition of ketone enolates

Michael addition ring closure with ketone enolates

Michael ketone

© 2024 chempedia.info