Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isotopic labeling effects

Beiner et al. 1998, Pressure-induced compatibility in a model polymer blend. Physical Review Letters, Vol. 81, No. 3, PP. 594-597 2002, Strong isotopic labeling effects on the pressure dependent thermodynamics of... [Pg.220]

Sakurai, S., Hasegawa, H., Hashimoto, T. Microstructure and isotopic labeling effects on the miscibility of polybutadiene blends studied by the small-angle neutron scattering technique. Macromolecules, 23, 451 59 (1990). [Pg.370]

Studies to determine the nature of intermediate species have been made on a variety of transition metals, and especially on Pt, with emphasis on the Pt(lll) surface. Techniques such as TPD (temperature-programmed desorption), SIMS, NEXAFS (see Table VIII-1) and RAIRS (reflection absorption infrared spectroscopy) have been used, as well as all kinds of isotopic labeling (see Refs. 286 and 289). On Pt(III) the surface is covered with C2H3, ethylidyne, tightly bound to a three-fold hollow site, see Fig. XVIII-25, and Ref. 290. A current mechanism is that of the figure, in which ethylidyne acts as a kind of surface catalyst, allowing surface H atoms to add to a second, perhaps physically adsorbed layer of ethylene this is, in effect, a kind of Eley-Rideal mechanism. [Pg.733]

Isotopic labeling with CD3, substituents effects (56), and general trends in the thiazole series (271) allowed a complete assignement of the major infrared bands for a series of 2-methylthiothiazoles. [Pg.405]

The overall biosynthetic pathway to the tetracychnes has been reviewed (74). Studies (75—78) utilising labeled acetate and malonate and nmr analysis of the isolated oxytetracycline (2), have demonstrated the exclusive malonate origin of the tetracycline carbon skeleton, the carboxamide substituent, and the folding mode of the polyketide chain. Feeding experiments using [1- 02] acetate and analysis of the nmr isotope shift effects, led to the location of... [Pg.181]

Complexed arenediazonium salts are stabilized against photochemical degradation (Bartsch et al., 1977). This effect was studied in the former German Democratic Republic in the context of research and development work on diazo copying processes (Israel, 1982 Becker et al., 1984) as well as in China (Liu et al., 1989). The comparison of diazonium ion complexation by 18-crown-6 and dibenzo-18-crown-6 is most interesting. Becker at al. (1984) found mainly the products of heterolytic dediazoniation when 18-crown-6 was present in photolyses with a medium pressure mercury lamp, but products of homolysis appeared in the presence of dibenzo-18-crown-6. The dibenzo host complex exhibited a charge-transfer absorption on the bathochromic slope of the diazonio band. Results on the photo-CIDNP effect in the 15N NMR spectra of isotopically labeled diazonium salts complexed by dibenzo-18-crown-6 indicate that the primary step is a single electron transfer. [Pg.302]

Adequate precision and accuracy are only likely to be achieved if some standardization procedure is employed and the nature of this, internal or external standards or the method of standard additions, needs to be chosen carefully. If internal standardization procedures are adopted then appropriate compound(s) must be chosen and their effect on the chromatographic and mass spectrometry methods assessed. The ideal internal standard is an isotopically labelled analogue of the analyte but, although there are a number of commercial companies who produce a range of such molecules, these are not always readily available. An analytical laboratory is then faced with the choice of carrying out the synthesis of the internal standard themselves or choosing a less appropriate alternative with implications on the accuracy and precision of the method to be developed. [Pg.270]

Trager, W.F. (1988). Isotope effects as mechanistic probes of cytochrome P450-catalysed reactions. In Synthesis and Application of Isotopically Labelled Compounds Proceedings of the Third International Symposium T.A. Baillie and J.R. Jones (Eds.) Amsterdam Elsevier 333-340. [Pg.371]

A disadvantage of this technique is that isotopic labeling can cause unwanted perturbations to the competition between pathways through kinetic isotope effects. Whereas the Born-Oppenheimer potential energy surfaces are not affected by isotopic substitution, rotational and vibrational levels become more closely spaced with substitution of heavier isotopes. Consequently, the rate of reaction in competing pathways will be modified somewhat compared to the unlabeled reaction. This effect scales approximately as the square root of the ratio of the isotopic masses, and will be most pronounced for deuterium or... [Pg.220]

Further evidence for different reaction pathways is obtained in isotope labelling experiments, illustrated in fig.6. Here we present a comparison of the effects of preadsorbing various amounts of deuterium with methyl groups cm the two metal surfaces. [Pg.332]

A simple NMR technique, and arguably the most widely used and effective for hit validation, is the chemical shift perturbation method. In this approach, a reference spectrum of isotopically labeled target is recorded in absence and presence of a given test ligand (or a mixture of test ligands). Commonly, differences in chemical shift between free and bound protein target are observed in 2D [15N, 1H and/or 2D [13C, H] correlation spectra of a protein (or nucleic acid) upon titration of a ligand... [Pg.130]

Cai M, Huang Y, Sakaguchi K, Clore GM, Gronenborn AM, Craigie R. An efficient and cost-effective isotope labeling protocol for proteins expressed in Escherichia coli. J Biomol NMR 1998 11 97-102. [Pg.90]

It is also important to note that matrix-related effects, either signal enhancement or more commonly signal suppression, can have a pronounced effect on quantitative measurements. Based on these observations, the use of isotope-labeled standards is helpful to achieve accurate analytical measurement data on the diastereoisomers. Several methods found in the open literature include use of both 13C-labeled and d18-labeled surrogates as recovery and/or instrument standards [118],... [Pg.56]

Internal standardization involves adding a chemical standard to the sample solution so that standard and sample are effectively measured at the same time. Internal chemical standards can be either the actual analyte, an isotopically labelled analyte or a related substance. The last one is usually chosen as something expected to be absent from the sample yet expected to behave towards the measurement process in a way similar to the analyte. There are a number of different ways of using internal standards and they sometimes serve a different purpose. [Pg.112]

Stratakis, M., Nencka, R., Rabalakos, C., Adam, W. and Krebs, O. (2002). Thionin-sensitized intrazeolite photooxygenation of trisubstituted alkenes substituent effects on the regioselectivity as probed through isotopic labeling. J. Org. Chem. 67, 8758-8763... [Pg.266]

The method development process with the multisorbent plate consists of three steps. In step 1, the sorbent chemistry and the pH for loading, washing, and elution are optimized. In step 2, optimization of the percentage organic for wash and elution and the pH of the buffer needed is carried out. Step 3 is validation the method developed from the results of the previous two steps is tested for linearity, limits of detection, quantitation of recovery, and matrix effects using a stable isotope-labeled analyte as an IS. [Pg.28]


See other pages where Isotopic labeling effects is mentioned: [Pg.46]    [Pg.26]    [Pg.328]    [Pg.46]    [Pg.26]    [Pg.328]    [Pg.982]    [Pg.228]    [Pg.475]    [Pg.497]    [Pg.181]    [Pg.982]    [Pg.8]    [Pg.40]    [Pg.221]    [Pg.444]    [Pg.230]    [Pg.776]    [Pg.192]    [Pg.184]    [Pg.238]    [Pg.239]    [Pg.156]    [Pg.355]    [Pg.84]    [Pg.30]    [Pg.82]    [Pg.91]    [Pg.28]    [Pg.142]    [Pg.133]   
See also in sourсe #XX -- [ Pg.27 , Pg.28 , Pg.29 ]




SEARCH



Isotope isotopic labeling

Isotope label

Isotope-labelled

Isotopic labeling

Isotopic labelled

Isotopic labelling

Isotopic labels

Isotopical labeling

Label effect

© 2024 chempedia.info