Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isomerization temperature dependence

Fig. 1. Examples of temperature dependence of the rate constant for the reactions in which the low-temperature rate-constant limit has been observed 1. hydrogen transfer in the excited singlet state of the molecule represented by (6.16) 2. molecular reorientation in methane crystal 3. internal rotation of CHj group in radical (6.25) 4. inversion of radical (6.40) 5. hydrogen transfer in halved molecule (6.16) 6. isomerization of molecule (6.17) in excited triplet state 7. tautomerization in the ground state of 7-azoindole dimer (6.1) 8. polymerization of formaldehyde in reaction (6.44) 9. limiting stage (6.45) of (a) chain hydrobromination, (b) chlorination and (c) bromination of ethylene 10. isomerization of radical (6.18) 11. abstraction of H atom by methyl radical from methanol matrix [reaction (6.19)] 12. radical pair isomerization in dimethylglyoxime crystals [Toriyama et al. 1977]. Fig. 1. Examples of temperature dependence of the rate constant for the reactions in which the low-temperature rate-constant limit has been observed 1. hydrogen transfer in the excited singlet state of the molecule represented by (6.16) 2. molecular reorientation in methane crystal 3. internal rotation of CHj group in radical (6.25) 4. inversion of radical (6.40) 5. hydrogen transfer in halved molecule (6.16) 6. isomerization of molecule (6.17) in excited triplet state 7. tautomerization in the ground state of 7-azoindole dimer (6.1) 8. polymerization of formaldehyde in reaction (6.44) 9. limiting stage (6.45) of (a) chain hydrobromination, (b) chlorination and (c) bromination of ethylene 10. isomerization of radical (6.18) 11. abstraction of H atom by methyl radical from methanol matrix [reaction (6.19)] 12. radical pair isomerization in dimethylglyoxime crystals [Toriyama et al. 1977].
The mechanism of B polymerization is summarized in Scheme 4,9. 1,2-, and cis- and trews-1,4-butadiene units may be discriminated by IR, Raman, or H or nC MMR speclroseopy.1 92 94 PB comprises predominantly 1,4-rra//.v-units. A typical composition formed by radical polymerization is 57.3 23.7 19.0 for trans-1,4- c7a -1,4- 1,2-. While the ratio of 1,2- to 1,4-units shows only a small temperature dependence, the effect on the cis-trans ratio appears substantial. Sato et al9J have determined dyad sequences by solution, 3C NMR and found that the distribution of isomeric structures and tacticity is adequately described by Bernoullian statistics. Kawahara et al.94 determined the microslructure (ratio // measurements directly on PB latexes and obtained similar data to that obtained by solution I3C NMR. They94 also characterized crosslinked PB. [Pg.184]

With alkyl- and arylsilanes, concurrent isomerization and hydrosilylation occur, but the rates of both processes fall away rapidly due to some reduction to the metal such deactivation is temperature-dependent, and high yields of adduct are obtained with these silanes when additions are carried out slowly at ambient temperature. [Pg.308]

Iwata K, Ozawa R, Hamaguchi H (2002) Analysis of the solvent- and temperature-dependent Raman spectral changes of S1 trans-stilbene and the mechanism of the trans to cis isomerization dynamic polarization model of vibrational dephasing and the C=C double-bond rotation. J Phys Chem A 106 3614—3620... [Pg.266]

The temperature dependence of the selectivity for isomerization versus hydrogenolysis depends on the type of catalyst. Thus, over thick platinum film catalysts this selectivity was temperature independent for the reaction of the butanes and neopentane (24). However, in Boudart and Ptak s (122) reaction of neopentane over platinum/carbon the selectivity to isomerization decreased slightly with increasing temperature while Kikuchi et al. (128) found an increased trend for isomerization in the reaction of n-pentane over platinum/silica and platinum/carbon catalysts. [Pg.30]

It is important to emphasize here that the model in such a form allows one to simulate the influence of the reaction conditions. The temperature dependence of all the relative probabilities appears in the exponential expressions for the rate constants and the equilibrium constants. The olefin pressure influences the isomerization-insertion relative probabilities. As a result, both, temperature and olefin pressure influence the values of the absolute probabilities for all the reactive events considered. In the following use has been made of calculated reaction rates [13f] to evaluate all stochastic probabilities, unless otherwise stated. [Pg.72]

The isomeric stilbene dicarbenes [20] were generated in 2-MTHF matrices in an epr cavity at 16 K (Murata et ai, 1987 Iwamura, 1988). The spectra obtained by the photolysis of the diazo-compounds [20a], precursors to m,p -[20] and w,m -[20], at 16 K exhibited conspicuous signals at ca. 250 mT, characteristic of quintet species. The signals of /w,w -[20] showed a dramatic temperature dependence (Fig. 16). First, their intensity increased as the temperature was raised, reaching a maximum at SO K, and then decreased somewhat and eventually irreversibly at above 65 K. In contrast, the intensity of the strong signal at ca. 250 mT and some weak signals due to m,p -[20] decreased linearly with the reciprocal of the temperature as dictated... [Pg.219]

A study on mechanistic aspects of di-ir-methane rearrangements has been published recently [72]. The kinetic modeling of temperature-dependent datasets from photoreactions of 1,3-diphenylpropene and several of its 3-substituted derivatives 127a-127d (structures 127 and 128) show that the singlet excited state decays via two inactivated processes, fluorescence and intersystem crossing, and two activated processes, trans-cis isomerization and phenyl-vinyl bridging. The latter activated process yields a biradical intermediate that partitions between forma-... [Pg.33]

In solution, vitamin D (both D2 and D3) isomerizes to previtamin D and forms a temperature-dependent equilibrium mixture [520], which leads to quantification problems. Previtamin D is difficult to quantify because of interference from co-eluted contaminants. The reversibility of the isomerization is very slow, therefore the percentage of previtamin can be considered constant during the entire analysis. The quantification of the potential vitamin D can be performed using an external standard that has undergone saponification procedure as the sample [521]. Vitamin D2 and D3 can be used as an internal standard to quantify the other one. Indeed, the isomerization rates of vitamins D2 and D3 are virtually the same thereby the previtamin D/vitamin D ratio will be the same for both vitamers at any temperature. The isomerization problem can be resolved by... [Pg.617]


See other pages where Isomerization temperature dependence is mentioned: [Pg.307]    [Pg.767]    [Pg.64]    [Pg.31]    [Pg.2]    [Pg.3]    [Pg.59]    [Pg.60]    [Pg.149]    [Pg.432]    [Pg.399]    [Pg.69]    [Pg.221]    [Pg.699]    [Pg.341]    [Pg.102]    [Pg.132]    [Pg.599]    [Pg.146]    [Pg.240]    [Pg.39]    [Pg.432]    [Pg.100]    [Pg.241]    [Pg.264]    [Pg.36]    [Pg.196]    [Pg.510]    [Pg.19]    [Pg.361]    [Pg.50]    [Pg.102]    [Pg.196]    [Pg.444]    [Pg.669]    [Pg.910]    [Pg.89]    [Pg.63]    [Pg.382]    [Pg.236]    [Pg.250]   
See also in sourсe #XX -- [ Pg.550 ]




SEARCH



Linkage isomerism temperature dependence

© 2024 chempedia.info