Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iron rhodium containing

Figure 4. Portion of the Mbssbauer spectrum for iron—rhodium alloys containing 48 and 50% rhodium (17)... Figure 4. Portion of the Mbssbauer spectrum for iron—rhodium alloys containing 48 and 50% rhodium (17)...
The corrosion behaviour of amorphous alloys has received particular attention since the extraordinarily high corrosion resistance of amorphous iron-chromium-metalloid alloys was reported. The majority of amorphous ferrous alloys contain large amounts of metalloids. The corrosion rate of amorphous iron-metalloid alloys decreases with the addition of most second metallic elements such as titanium, zirconium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, cobalt, nickel, copper, ruthenium, rhodium, palladium, iridium and platinum . The addition of chromium is particularly effective. For instance amorphous Fe-8Cr-13P-7C alloy passivates spontaneously even in 2 N HCl at ambient temperature ". (The number denoting the concentration of an alloy element in the amorphous alloy formulae is the atomic percent unless otherwise stated.)... [Pg.633]

Structural types for organometallic rhodium and iridium porphyrins mostly comprise five- or six-coordinate complexes (Por)M(R) or (Por)M(R)(L), where R is a (T-bonded alkyl, aryl, or other organic fragment, and Lisa neutral donor. Most examples contain rhodium, and the chemistry of the corresponding iridium porphyrins is much more scarce. The classical methods of preparation of these complexes involves either reaction of Rh(III) halides Rh(Por)X with organolithium or Grignard reagents, or reaction of Rh(I) anions [Rh(Por)] with alkyl or aryl halides. In this sense the chemistry parallels that of iron and cobalt porphyrins. [Pg.293]

After years of use catalyst solutions typically contain 20 mg-L"1 iron and 0.7 mg-L"1 of nickel, thus showing no corrosivity. The Rh content of crude aldehyde is in the ppb range this corresponds to losses of less than 10 9 g kg"1 n-butanal, totalling some kg rhodium over a twenty-year period and a production of approximately 5 million metric tons of n-butanal. [Pg.128]

Figure 3. Mossbauer spectra for ordered and disordered samples of an alloy of 25% rhodium and 75% iron. The disordered sample was quenched and contains retained austenite (17)... Figure 3. Mossbauer spectra for ordered and disordered samples of an alloy of 25% rhodium and 75% iron. The disordered sample was quenched and contains retained austenite (17)...
After the resolution of 1-2-chloro-ammino-diethylenediamino-cobaltie chloride many analogous resolutions of optically active compounds of octahedral symmetry were carried out, and active isomers of substances containing central cobalt, chromium, platinum, rhodium, iron atoms are known. The asymmetry is not confined to ammines alone, but is found in salts of complex type for example, potassium tri-oxalato-chromium, [Cr(Ca04)3]K3, exists in two optically active forms. These forms were separated by Werner2 by means of the base strychnine. More than forty series of compounds possessing octahedral symmetry have been proved to exist in optically active forms, so that the spatial configuration for co-ordination number six is firmly established. [Pg.26]

It is further important to note that all the current/voltage characteristics depicted in Fig. 6 are unchanged by the presence of liquid fuels such as methanol, formaldehyde, formic acid, or hydrazine. The phthalocyanine electrode remains completely inert toward such substances. For this reason, no mixed potential can be formed at a phthalocyanine electrode, as for example can occur at a platinum electrode, when it is used as cathode in a methanol cell containing sulfuric acid. This is shown by a comparison (see Fig. 7) of the stationary characteristics of the platinum alloy we found to be the most active in the presence of methanol, namely a Raney ruthenium—rhodium electrode, with an iron phthalocyanine electrode, both measured in 4.5 N H2SO4+2M CH3OH. [Pg.149]

To measure temperatures not exceeding 800 °C, one should use thermocouples made from copper and constantan (the latter is an alloy of 45-60% copper, 40-55% nickel, and 0-1.4% manganese it usually also contains about 0.1% carbon), Alumel (an alloy of 95% nickel, 2 % aluminium, 2% manganese, and 1% silicon), and Chromel (90% nickel and 10% chromium), or iron and constantan. Platinum-platinum/rhodium thermocouples are generally used for measuring high temperatures (up to 1600 °C). [Pg.27]

The phenomenon of metal transport via the creation of volatile metal carbonyls is familiar to workers using carbon monoxide as a reactant. It is often found that carbon monoxide is contaminated with iron pentacarbonyl, formed by interactions between carbon monoxide and the walls of a steel container. Thus, it is common practice to place a hot trap between the source of the CO and the reaction vessel. Iron carbonyl decomposes in the hot trap and never reaches the catalyst that it would otherwise contaminate or poison. Transport of a number of transition metals via volatile metal carbonyls is common. For example, Collman et al. (73) found that rhodium from rhodium particles supported on either a polymeric support or on alumina could be volatilized to form rhodium carbonyls in flowing CO. [Pg.375]

Fig. 4. RhFe4C(CO)74, as in its (C2H5)4N+ salt (4). Rhodium atom denoted as an open circle in the base of square pyramidal core. The salt contains two enantiomeric forms of the anion, producing a disordered structure in which iron and rhodium equally occupy each end of the carbonyl bridged edge of the basal pIane(Rh-Fe = 2.779 A). Fe-M bonds to disordered metal atoms (Rh/Fe) average 2.63 A, and remaining Fe-Fe bonds average 2.62 A. Metal-carbide distances are Fe>picri-C = 1.98 A, Fe -C = 1.87 A, Rh/Fe-C = 1.94 A. The carbide lies 0.19 A below the RhFe3 plane. Fig. 4. RhFe4C(CO)74, as in its (C2H5)4N+ salt (4). Rhodium atom denoted as an open circle in the base of square pyramidal core. The salt contains two enantiomeric forms of the anion, producing a disordered structure in which iron and rhodium equally occupy each end of the carbonyl bridged edge of the basal pIane(Rh-Fe = 2.779 A). Fe-M bonds to disordered metal atoms (Rh/Fe) average 2.63 A, and remaining Fe-Fe bonds average 2.62 A. Metal-carbide distances are Fe>picri-C = 1.98 A, Fe -C = 1.87 A, Rh/Fe-C = 1.94 A. The carbide lies 0.19 A below the RhFe3 plane.
Hydrothermal methods, for molecuarlar precursor transformation to materials, 12, 47 Hydrotris(3,5-diisopropylpyrazolyl)borate-containing acetylide, in iron complex, 6, 108 Hydrotris(3,5-dimethylpyrazolyl)borate groups, in rhodium Cp complexes, 7, 151 Hydrotris(pyrazolyl)borates in cobalt(II) complexes, 7, 16 for cobalt(II) complexes, 7, 16 in rhodium Cp complexes, 7, 151 Hydrovinylation, with transition metal catalysts, 10, 318 Hydroxides, info nickel complexes, 8, 59-60 Hydroxo complexes, with bis-Cp Ti(IV), 4, 586 Hydroxyalkenyl complexes, mononuclear Ru and Os compounds, 6, 404-405 a-Hydroxyalkylstannanes, preparation, 3, 822 y-Hydroxyalkynecarboxylate, isomerization, 10, 98 Hydroxyalkynes, in hexaruthenium carbido clusters, 6, 1015 a-Hydroxyallenes... [Pg.124]

The ligands triphos or/ and np in presence of compounds of iron, cobalt, nickel, rhodium, iridium and palladium, by reaction with THF solutions of white phosphorus, P, or yellow arsenic, As, form mononuclear or dinuclear sandwich complexes containing the cyclo-triphosphorus or cyclo-triarsenic units which behave as 3n-electrons rings. [Pg.487]


See other pages where Iron rhodium containing is mentioned: [Pg.27]    [Pg.9]    [Pg.445]    [Pg.48]    [Pg.15]    [Pg.5]    [Pg.33]    [Pg.164]    [Pg.165]    [Pg.455]    [Pg.224]    [Pg.357]    [Pg.101]    [Pg.96]    [Pg.31]    [Pg.16]    [Pg.243]    [Pg.60]    [Pg.792]    [Pg.691]    [Pg.158]    [Pg.280]    [Pg.216]    [Pg.51]    [Pg.9]    [Pg.18]    [Pg.717]    [Pg.721]    [Pg.235]    [Pg.164]    [Pg.165]    [Pg.1]    [Pg.125]    [Pg.303]    [Pg.9]    [Pg.46]    [Pg.16]    [Pg.369]    [Pg.292]   
See also in sourсe #XX -- [ Pg.972 ]




SEARCH



Rhodium clusters iron containing

© 2024 chempedia.info