Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iron hydroxide, solubility product constant

It has long been recognized that ferric iron is a moderately strong acid. As early as 1896, Goodwin (5) concluded from conductometric measurements that simple dilution of ferric chloride solutions led to the formation of FeOH2+. The insolubility of ferric hydroxide has of course been appreciated even longer. The best current estimate of the solubility product constant for Fe OH)s at 25° (in 3 M NaC104) is (d). [Pg.118]

Metastability of Hydrolyzed Iron (III) Solutions The low solubility of ferric hydroxide has been alluded to in the Introduction. Feitknecht and Michaelis (29) have observed that aU ferric perchlorate solutions to which base has been added are unstable with respect to eventual precipitation of various forms of hydrated ferric oxides. In 3 M NaC104 at 25° C the two phase system reaches an apparent equilibrium after 200 hours, according to Biedermann and Schindler (6), who obtained a reproducible solubility product constant for ferric hydroxide at varying degrees of hydrolysis. It appears that many of the solutions used in the equilibrium studies of Hedstrom (9) and Biedermann (22) were metastable, and should eventually have produced precipitates. Nevertheless, since the measured potentials were reversible, the conclusions reached about the species present in solution remain valid. [Pg.121]

A suite of both oxidized and reduced iron minerals has been found as efflorescences and precipitates in or near the acid mine water of Iron Mountain. The dominant minerals tend to be melan-terite (or one of its dehydration products), copiapite, jarosite and iron hydroxide. These minerals and their chemical formulae are listed in Table III from the most ferrous-rich at the top to the most ferric-rich at the bottom. These minerals were collected in air-tight containers and identified by X-ray diffractometry. It was also possible to check the mineral saturation indices (log Q(AP/K), where AP = activity product and K = solubility product constant)of the mine waters with the field occurrences of the same minerals. By continual checking of the saturation index (S.I.) with actual mineralogic occurrences, inaccuracies in chemical models such as WATEQ2 can be discovered, evaluated and corrected (19), provided that these occurrences can be assumed to be an approach towards equilibrium. [Pg.66]

The extent of hydrolysis of (MY)(n 4)+ depends upon the characteristics of the metal ion, and is largely controlled by the solubility product of the metallic hydroxide and, of course, the stability constant of the complex. Thus iron(III) is precipitated as hydroxide (Ksal = 1 x 10 36) in basic solution, but nickel(II), for which the relevant solubility product is 6.5 x 10 l8, remains complexed. Clearly the use of excess EDTA will tend to reduce the effect of hydrolysis in basic solutions. It follows that for each metal ion there exists an optimum pH which will give rise to a maximum value for the apparent stability constant. [Pg.60]


See other pages where Iron hydroxide, solubility product constant is mentioned: [Pg.666]    [Pg.655]   
See also in sourсe #XX -- [ Pg.633 ]

See also in sourсe #XX -- [ Pg.633 ]

See also in sourсe #XX -- [ Pg.635 ]




SEARCH



Hydroxides, solubility products

Iron hydroxide

Iron hydroxide, solubility-product

Iron production

Iron products

Iron solubility

Iron solubility products

Product constant

Products soluble

Solubility constant

Solubility product constants

Solubility products

© 2024 chempedia.info