Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iron chondrites

Winonaite-IAB-iron Chondritic ultramahc Equi granular, -0.48 O.IO Metamorphism... [Pg.293]

Fig. 2. The plot of total reduced iron, Fe, and oxidized iron, Fe, normalized to Si abundance shows how the chondrite classes fall into groups distinguished by oxidation state and total Fe Si ratio. The soHd diagonal lines delineate compositions having constant total Fe Si ratios of 0.6 and 0.8. The fractionation of total Fe Si is likely the result of the relative efficiencies of accumulation of metal and siUcate materials into the meteorite parent bodies. The variation in oxidation state is the result of conditions in the solar nebula when the soHds last reacted with gas. Terms are defined in Table 1 (3). Fig. 2. The plot of total reduced iron, Fe, and oxidized iron, Fe, normalized to Si abundance shows how the chondrite classes fall into groups distinguished by oxidation state and total Fe Si ratio. The soHd diagonal lines delineate compositions having constant total Fe Si ratios of 0.6 and 0.8. The fractionation of total Fe Si is likely the result of the relative efficiencies of accumulation of metal and siUcate materials into the meteorite parent bodies. The variation in oxidation state is the result of conditions in the solar nebula when the soHds last reacted with gas. Terms are defined in Table 1 (3).
Chondrites Achondrites Stony iron meteorites Iron meteorites... [Pg.66]

The chondrules contained in the chondrites contain olivine, pyroxene, plagiok-lase, troilite and nickel-iron they can make up 40-90% of the chondrites. Chondrules are silicate spheroids, fused drops from the primeval solar nebula. Because of their differing constitution, chondrites are further subdivided one group in particular is important for the question of the origin of life, and has thus been intensively studied—that of the carbonaceous chondrites. [Pg.67]

The largest class of meteorite finds is stony meteorites, made principally of stone. The general stony classification is divided into three subclasses called chondrites, carbonaceous chondrites and achondrites, and it is at this level of distinction at which we will stop. Before looking at their mineral and isotopic structure in more detail, it is useful to hold the composition of the Earth s crust in mind here for comparison. The Earth s crust is 49 per cent oxygen, 26 per cent silicon, 7.5 per cent aluminium, 4.7 per cent iron, 3.4 per cent calcium, 2.6 per cent sodium, 2.4 per cent potassium and 1.9 per cent magnesium, which must have formed from the common origin of the solar system. [Pg.162]

Meteorites General classification into stony, stony-iron and iron, each with an interesting mineralogy, notably the carbonaceous chondrites... [Pg.190]

Refractory materials in primitive meteorites were investigated first as they have the best chance of escaping homogenization in the early solar system. Inclusions in C3 carbonaceous chondrites exhibit widespread anomalies for oxygen and the iron group elements. Only a few members, dubbed FUN (for Fractionated and Unknown Nuclear effects), also display anomalous compositions for the heavy elements. Anomalies in inclusions have generally been connected with explosive or supernova nucleosynthesis. [Pg.25]

Figure 8. Figure (a) after Clayton et al. (1976, 1977). The scales are as in Figure 1. The O isotopic compositions of the different meteorite classes are represented ordinary chondrites (H, L, LL), enstatite chondrites (EFl, EL), differentiated meteorites (eucrites, lAB irons, SNCs) and some components of the carbonaceous chondrites. As the different areas do not overlap, a classification of the meteorites can be drawn based on O isotopes. Cr (b) and Mo (c) isotope compositions obtained by stepwise dissolution of the Cl carbonaceous chondrite Orgueil (Rotaru et al. 1992 Dauphas et al. 2002), are plotted as deviations relative to the terrestrial composition in 8 units. Isotopes are labeled according to their primary nucleosynthetic sources. ExpSi is for explosive Si burning and n-eq is for neutron-rich nuclear statistical equilibrium. The open squares represent a HNOj 4 N leachate at room temperature. The filled square correspond to the dissolution of the main silicate phase in a HCl-EIF mix. The M pattern for Mo in the silicates is similar to the s-process component found in micron-size SiC presolar grains as shown in Figure 7. Figure 8. Figure (a) after Clayton et al. (1976, 1977). The scales are as in Figure 1. The O isotopic compositions of the different meteorite classes are represented ordinary chondrites (H, L, LL), enstatite chondrites (EFl, EL), differentiated meteorites (eucrites, lAB irons, SNCs) and some components of the carbonaceous chondrites. As the different areas do not overlap, a classification of the meteorites can be drawn based on O isotopes. Cr (b) and Mo (c) isotope compositions obtained by stepwise dissolution of the Cl carbonaceous chondrite Orgueil (Rotaru et al. 1992 Dauphas et al. 2002), are plotted as deviations relative to the terrestrial composition in 8 units. Isotopes are labeled according to their primary nucleosynthetic sources. ExpSi is for explosive Si burning and n-eq is for neutron-rich nuclear statistical equilibrium. The open squares represent a HNOj 4 N leachate at room temperature. The filled square correspond to the dissolution of the main silicate phase in a HCl-EIF mix. The M pattern for Mo in the silicates is similar to the s-process component found in micron-size SiC presolar grains as shown in Figure 7.
Virag A, Zinner E, Lewis RS, Tang M (1989) Isotopic compositions of H, C, and N in C8 diamonds from the Allende and Murray carbonaceous chondrites. Lunar Planet Sci XX 1158-1159 Volkening J, Papanastassiou DA (1989) Iron isotope anomalies. Astrophys J 347 L43-L46 Volkening J, Papanastassiou DA (1990) Zinc isotope anomalies. Astrophys J 358 L29-L32 Wadhwa M, Zinner EK, Crozaz G (1997) Manganese-chromium systematics in sulfides of unequilibrated enstatite chondrites. Meteorit Planet Sci 32 281-292... [Pg.63]

Copper in meteorites is depleted in the heavier 65 isotope with respeet to the Earth (Luek et al. 2003 Russell et al. 2003). Luck et al. s (2003) study of the four main groups of carbonaceous chondrites CI-CM-CO-CV showed that Cu depletion is maximum (-1.5%o) for the C V chondrites (e.g., Allende) for which the depletion of volatile elements is strongest, which indicates that volatilization does not accormt for the observed isotopic heterogeneity (Fig. 4). Luck et al. (2003) found that 8 Cu in CI-CM-CO classes correlates with O excess, but this does not seems to be the case for CV (Luck et al. 2003) nor for the CR, CB, and the particularly Cu-depleted CH-like classes (Russell et al. 2003). In contrast, chondritic Zn is relatively heavy with 8 Zn up to 1 %o (Luck et al. 2001). The rather high 5 Zn values of iron meteorites (up to 4%o)is reminiscent of a similar fractionation of Fe isotopes between metal and silicates (Zhu et al. 2002). [Pg.416]

I Black smoker chalcopyrite, n=16 Carbonaceous chondrites and iron meteorites, n=20... [Pg.421]

Equation 11.118 finds practical application in cosmological studies and in geology (dating of sulfide deposits and sediments). Figure 11.27A shows, for instance, the Re-Os isochron for iron meteorites and the metallic phase of chondrites, obtained by Luck and Allegre (1983). The fact that all samples fit the same isochron within analytical uncertainty has three important cosmological implications ... [Pg.763]

Figure 11.27 Re-Os isochron for iron meteorites and metallic phase of chondrites and earth s mantle. Reprinted with permission from J. M. Luck and C. J. Allegre, Nature, 302, 130-132, copyright 1983 Macmillan Magazines Limited. Figure 11.27 Re-Os isochron for iron meteorites and metallic phase of chondrites and earth s mantle. Reprinted with permission from J. M. Luck and C. J. Allegre, Nature, 302, 130-132, copyright 1983 Macmillan Magazines Limited.
Calculations predict that metallic iron should react with sulfur in nebular gas when temperatures drop below 650 to produce iron sulfide FeS (troilite). Indeed, brassy troilite grains are commonly observed in association with metal in chondrites. However, sulfur is so readily mobilized during later heating so that it is doubtful that troilite grains formed by nebular reactions have been preserved in their original form. [Pg.164]

Irons are non-chondritic meteorites that are predominantly metal. Iron meteorites formed by melting of, most likely, chondritic material and segregation of metal melt from silicate. Many apparently represent asteroidal cores, although some may have formed as dispersed metal pockets in the parent asteroids. [Pg.173]

The winonaites are compositionally similar to silicate inclusions in some IAB irons (described below). They have chondritic compositions, and relict chondrules have been found in some meteorites. They consist of olivine, pyroxenes, plagioclase, metal, troilite, and other minor minerals (Benedix et al., 1998), and most have been recrystallized. Like the acapulcoites, they have experienced only small degrees of melting. [Pg.178]

The aubrites are the most reduced achondrites (Keil et al., 1989). Their silicates are essentially free of iron, and they contain minor metallic iron. A variety of unusual sulfides of calcium, chromium, manganese, titanium, and sodium - all usually lithophile elements -occur in aubrites. These unusual sulfides also characterize the highly reduced enstatite chondrites, which may have been precursors for these rocks. [Pg.178]


See other pages where Iron chondrites is mentioned: [Pg.75]    [Pg.75]    [Pg.106]    [Pg.75]    [Pg.75]    [Pg.106]    [Pg.95]    [Pg.96]    [Pg.97]    [Pg.22]    [Pg.162]    [Pg.198]    [Pg.94]    [Pg.340]    [Pg.51]    [Pg.52]    [Pg.52]    [Pg.63]    [Pg.319]    [Pg.320]    [Pg.337]    [Pg.339]    [Pg.426]    [Pg.99]    [Pg.669]    [Pg.157]    [Pg.164]    [Pg.166]    [Pg.166]    [Pg.166]    [Pg.168]    [Pg.174]    [Pg.181]    [Pg.187]    [Pg.208]    [Pg.211]   
See also in sourсe #XX -- [ Pg.5 , Pg.6 ]




SEARCH



Chondrites

Chondrites iron/magnesium ratio

Chondrites metallic iron

© 2024 chempedia.info