Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iridium alkyls, carbonylation

The analogous anionic iridium complex reacts with methyl iodide 150 times faster than the rhodium complex. The iridium complex also reacts 140-200 times faster than the rhodium analog with higher alkyl iodides/ but competing radical mechanisms appear to occur during the addition of the higher alkyl iodides. More details on the mechanism of rhodium and iridium-catalyzed carbonylation of methanol are provided in Chapter 17. [Pg.304]

Ca.ta.lysis, Iridium compounds do not have industrial appHcations as catalysts. However, these compounds have been studied to model fundamental catalytic steps (174), such as substrate binding of unsaturated molecules and dioxygen oxidative addition of hydrogen, alkyl haHdes, and the carbon—hydrogen bond reductive elimination and important metal-centered transformations such as carbonylation, -elimination, CO reduction, and... [Pg.181]

The stereospecific polymerization of alkenes is catalyzed by coordination compounds such as Ziegler-Natta catalysts, which are heterogeneous TiCl —AI alkyl complexes. Cobalt carbonyl is a catalyst for the polymerization of monoepoxides several rhodium and iridium coordination compounds... [Pg.171]

The rate of the methanol carbonylation reaction in the presence of iridium catalysts is very similar to that observed in the presence of rhodium catalysts under comparable conditions (29). This is perhaps initially surprising in view of the well-recognized greater nucleophilicity of iridium(I) complexes as compared to their rhodium(I) analogues. It can be seen from the above studies that the difference in the chemistry of the metals at the trivalent stage of the catalytic cycle serves to produce faster rates of alkyl migration with the rhodium system thus, overall the two metal catalysts give comparable rates. [Pg.266]

Acyl nitroso compounds (3, Scheme 7.2) contain a nitroso group (-N=0) directly attached to a carbonyl carbon. Oxidation of an N-acyl hydroxylamine derivative provides the most direct method for the preparation of acyl C-nitroso compounds [10]. Treatment of hydroxamic acids, N-hydroxy carbamates or N-hydroxyureas with sodium periodate or tetra-alkyl ammonium periodate salts results in the formation of the corresponding acyl nitroso species (Scheme 7.2) [11-14]. Other oxidants including the Dess-Martin periodinane and both ruthenium (II) and iridium (I) based species efficiently convert N-acyl hydroxylamines to the corresponding acyl nitroso compounds [15-18]. The Swern oxidation also provides a useful alternative procedure for the oxidative preparation of acyl nitroso species [19]. Horseradish peroxidase (HRP) catalyzed oxidation of N-hydroxyurea with hydrogen peroxide forms an acyl nitroso species, which can be trapped with 1, 3-cyclohexanone, giving evidence of the formation of these species with enzymatic oxidants [20]. [Pg.179]

A possible mechanism for the N-alkylation of primary amines is shown in Scheme 5.21. The first step of the reaction involves the oxidation of an alcohol to a carbonyl intermediate, accompanied by the generation of an iridium hydride. [Pg.124]

The use of CO2 as a reagent for synthetic purposes would be highly desirable, due not only to the vast availabiUty of this gas but also its environmental concerns. The stoichiometric activation of CO2 has been achieved with the iridium-PCP complex 29 comprising an alkyl rather than an aryl skeleton (Scheme 12.12) [32]. The addition of CO2 to the dihydride complex results in C=0 insertion into the iridium-hydride bond, and affords the formate complex 30. However, this complex is not stable and disproportionates spontaneously into the virtually insoluble bicarbonate complex 31 and the carbonyl dihydride 32. Such disproportionation is suppressed when the iridium metal center is replaced by rhodium [33], which is generally assumed to have a lower hydride affinity than iridium. [Pg.318]

Our study on the synthesis, structure and catalytic properties of rhodium and iridium dimeric and monomeric siloxide complexes has indicated that these complexes can be very useful as catalysts and precursors of catalysts of various reactions involving olefins, in particular hydrosilylation [9], silylative couphng [10], silyl carbonylation [11] and hydroformylation [12]. Especially, rhodium siloxide complexes appeared to be much more effective than the respective chloro complexes in the hydrosilylation of various olefins such as 1-hexene [9a], (poly)vinylsiloxanes [9b] and allyl alkyl ethers [9c]. [Pg.293]

The kinetics of hydrogenolysis of a metal-alkyl have been monitored by HP IR spectroscopy for [MeIr(CO)2l3] , the resting state in the cycle for iridium catalysed methanol carbonylation [113]. On treatment with H2 at elevated temperatures, the v(CO) bands of [MeIr(CO)2l3] decayed and were replaced by new r(CO) bands at slightly higher frequency and a v(Ir-H) absorption, corresponding to Eq. (10). [Pg.141]

The products of oxidative addition of acyl chlorides and alkyl halides to various tertiary phosphine complexes of rhodium(I) and iridium(I) are discussed. Features of interest include (1) an equilibrium between a five-coordinate acetylrhodium(III) cation and its six-coordinate methyl(carbonyl) isomer which is established at an intermediate rate on the NMR time scale at room temperature, and (2) a solvent-dependent secondary- to normal-alkyl-group isomerization in octahedral al-kyliridium(III) complexes. The chemistry of monomeric, tertiary phosphine-stabilized hydroxoplatinum(II) complexes is reviewed, with emphasis on their conversion into hydrido -alkyl or -aryl complexes. Evidence for an electronic cis-PtP bond-weakening influence is presented. [Pg.196]

Imidazolium ligands, in Rh complexes, 7, 126 Imidazolium salts iridium binding, 7, 349 in silver(I) carbene synthesis, 2, 206 Imidazol-2-ylidene carbenes, with tungsten carbonyls, 5, 678 (Imidazol-2-ylidene)gold(I) complexes, preparation, 2, 289 Imidazopyridine, in trinuclear Ru and Os clusters, 6, 727 Imidazo[l,2-a]-pyridines, iodo-substituted, in Grignard reagent preparation, 9, 37—38 Imido alkyl complexes, with tantalum, 5, 118—120 Imido-amido half-sandwich compounds, with tantalum, 5,183 /13-Imido clusters, with trinuclear Ru clusters, 6, 733 Imido complexes with bis-Gp Ti, 4, 579 with monoalkyl Ti(IV), 4, 336 with mono-Gp Ti(IV), 4, 419 with Ru half-sandwiches, 6, 519—520 with tantalum, 5, 110 with titanium(IV) dialkyls, 4, 352 with titanocenes, 4, 566 with tungsten... [Pg.125]

In both cases 3C NMR showed the carbonyls attached to the rhodium or iridium precursor exhibited an important high field shift (31) upon CH.I addition, indicative of CO coordinated to high oxidation state cation. Furthermore it was shown that such carbonyl carbons were highly electron deficient thus particularly suited for a nucleophilic attack by species such as alkyls etc. [Pg.463]

Unlike the hydrogenation catalysts, most iridium catalysts studied for hydroformylation chemistry are not particularly active and are usually much less active than their rhodium counterparts see Carbonylation Processes by Homogeneous Catalysis). However, this lower activity was useful in utihzing iridium complexes to study separate steps in the hydroformylation mechanism. Using iridium complexes, several steps important in the hydroformylation cycle such as alkyl migration to carbon monoxide were studied. Another carbonylation reaction in which iridum catalysis appears to be conunercially viable is in the carbonylation of methanol. ... [Pg.1863]

Oxidative addition reactions of dihydrogen , iodine ", alkyl halides and Hg(CN)2 to carbonyl, olefin or phosphine substituted derivatives of rhodium(I) and iridium(I) have been described. In order to determine the effect on the rate of the reaction, the kinetics of the oxidative addition of Hg(CN)2 to Rh(dik)(P(OPh)3)2 has been studied . A second-order rate law coupled to large negative values of the activation entropy suggest an associative mechanism which probably proceeds via a cyclic three-centred transition state (equation 58). Analogous results were obtained with Ir(dik)(cod) . ... [Pg.501]

In the 1990s, BP re-examined the iridium-catalyzed methanol carbonylation chemistry first discovered by Paulik and Roth and later defined in more detail by Forster [20]. The thrust of this research was to identify an improved methanol carbonylation process using Ir as an alternative to Rh. This re-examination by BP led to the development of a low-water iridium-catalyzed process called Cativa [20]. Several advantages were identified in this process over the Rh-catalyzed high-water Monsanto technology. In particular, the Ir catalyst provides high carbonylation rates at low water concentrations with excellent catalyst stability (less prone to precipitation). The catalyst system does not require high levels of iodide salts to stabilize the catalyst. Fewer by-products are formed, such as propionic acid and acetaldehyde condensation products which can lead to low levels of unsaturated aldehydes and heavy alkyl iodides. Also, CO efficiency is improved. [Pg.113]


See other pages where Iridium alkyls, carbonylation is mentioned: [Pg.1260]    [Pg.65]    [Pg.202]    [Pg.306]    [Pg.353]    [Pg.105]    [Pg.415]    [Pg.77]    [Pg.96]    [Pg.133]    [Pg.288]    [Pg.207]    [Pg.76]    [Pg.171]    [Pg.308]    [Pg.324]    [Pg.463]    [Pg.1865]    [Pg.159]    [Pg.66]    [Pg.12]    [Pg.282]    [Pg.29]   
See also in sourсe #XX -- [ Pg.97 , Pg.102 , Pg.116 , Pg.135 , Pg.136 ]




SEARCH



Alkylative carbonylation

Carbonyl alkylation

Iridium alkyl

Iridium carbonylation

Iridium carbonyls

© 2024 chempedia.info