Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic liquids equilibria pressure effects

The simplest method to measure gas solubilities is what we will call the stoichiometric technique. It can be done either at constant pressure or with a constant volume of gas. For the constant pressure technique, a given mass of IL is brought into contact with the gas at a fixed pressure. The liquid is stirred vigorously to enhance mass transfer and to allow approach to equilibrium. The total volume of gas delivered to the system (minus the vapor space) is used to determine the solubility. If the experiments are performed at pressures sufficiently high that the ideal gas law does not apply, then accurate equations of state can be employed to convert the volume of gas into moles. For the constant volume technique, a loiown volume of gas is brought into contact with the stirred ionic liquid sample. Once equilibrium is reached, the pressure is noted, and the solubility is determined as before. The effect of temperature (and thus enthalpies and entropies) can be determined by repetition of the experiment at multiple temperatures. [Pg.84]

Pure-component properties from which prediction of salt effect in vapor-liquid equilibrium might be sought, include vapor pressure lowering, salt solubility, degree of dissociation and ionic properties (charges and radii) of the salt, polarity, structural geometry, and perhaps others. [Pg.36]

From the above equation, the variation of equilibrium disjoining pressure and the radius of curvature of plateau border with position for a concentrated emulsion can be obtained. If the polarizabilities of the oil, water and the adsorbed protein layer (the effective Hamaker constants), the net charge of protein molecule, ionic strength, protein-solvent interaction and the thickness of the adsorbed protein layer are known, the disjoining pressure II(x/7) can be related to the film thickness using equations 9 -20. The variation of equilitnium film thickness with position in the emulsion can then be calculated. From the knowledge of r and Xp, the variation of cross sectional area of plateau border Qp and the continuous phase liquid holdup e with position can then be calculated using equations 7 and 21 respectively. The results of such calculations for different parameters are presented in the next session. [Pg.236]

The solubility measure describes the concentration reached in solution, when a pure phase of the material is allowed to dissolve in the solvent for a defined period of time, at a defined temperature (and pressure). Most often for pharmaceutical purposes, the pure phase is a solid, ideally a crystalline solid, and the liquid is water or a buffered aqueous solution, at a controlled temperature (often 25 or 37 °C) and ambient pressure. The purity of the solid can have a large effect on measured solubility. Solubility can be measured in water or in pH-controlled buffers. In water, the extent of solubility for ionizable compounds will depend upon the p fCa values and the nature of the counterion. In pH-controlled aqueous buffered solution, at equilibrium, the solubility will depend upon the compound s intrinsic solubility, its plQ, and the ionic strength. It may also depend upon the relative solubility of the initial added compound and the solubility of the salt formed by the compound with the buffer salts, with which the solid may equilibrate. In any buffer or solvent system, the measured solubility may depend on the time of sampling, as solubility kinetics... [Pg.56]


See other pages where Ionic liquids equilibria pressure effects is mentioned: [Pg.267]    [Pg.481]    [Pg.141]    [Pg.24]    [Pg.327]    [Pg.22]    [Pg.23]    [Pg.32]    [Pg.413]    [Pg.214]    [Pg.23]    [Pg.463]    [Pg.1133]    [Pg.635]    [Pg.27]    [Pg.93]    [Pg.282]   
See also in sourсe #XX -- [ Pg.145 , Pg.146 ]




SEARCH



Equilibrium pressure

Ionic liquid effect

Ionic pressure

Pressure, effecting equilibrium

© 2024 chempedia.info