Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Inverse Born-Oppenheimer approximation

A detailed discussion of the theoretical evaluation of the adiabatic correction for a molecular system is beyond the scope of this book. The full development involves, among other matters, the investigation of the action of the kinetic energy operators for the nuclei (which involve inverse nuclear masses) on the electronic wave function. Such terms are completely ignored in the Born-Oppenheimer approximation. In order to go beyond the Born-Oppenheimer approximation as a first step one can expand the molecular wave function in terms of a set of Born-Oppenheimer states (designated as lec (S, r ))... [Pg.44]

Eq. (5.34). However, it is possible to construct approximate wavefunctions that lead to electron momentum densities that do not have inversion symmetry. Within the Born-Oppenheimer approximation, the total electronic system must be at rest the at-rest condition... [Pg.314]

In the Born-Oppenheimer approximation, the molecular wave function is the product of electronic and nuclear wave functions see (4.90). We now examine the behavior of if with respect to inversion. We must, however, exercise some care. In finding the nuclear wave functions fa we have used a set of axes fixed in space (except for translation with the molecule). However, in dealing with if el (Sections 1.19 and 1.20) we defined the electronic coordinates with respect to a set of axes fixed in the molecule, with the z axis being the internuclear axis. To find the effect on if of inversion of all nuclear and electronic coordinates, we must use the set of space-fixed axes for both fa and if el. We shall call the space-fixed axes X, Y, and Z, and the molecule-fixed axes x, y, and z. The nuclear wave function of a diatomic molecule has the (approximate) form (4.28) for 2 electronic states, where q=R-Re, and where the angles are defined with respect to space-fixed axes. When we replace each nuclear coordinate in fa by its negative, the internuclear distance R is unaffected, so that the vibrational wave function has even parity. The parity of the spherical harmonic Yj1 is even or odd according to whether J is even or odd (Section 1.17). Thus the parity eigenvalue of fa is (- Yf. [Pg.342]

Eq. (16.39) is first transformed to mass-dependent coordinates by a G matrix containing the inverse square root of atomic masses (note that atomic, not nuclear, masses are used, which is in line with the Born-Oppenheimer approximation that the electrons follow the nuclei). [Pg.526]

Suppose we wish to know the dipole moment of, say, the HCl molecule, the quantity that tells us important information about the charge distribution. We look up the output and we do not find anything about dipole moment. The reason is that all molecules have the same dipole moment in any of their stationary state y, and this dipole moment equals to zero, see, e.g., Piela (2007) p. 630. Indeed, the dipole moment is calculated as the mean value of the dipole moment operator i.e., ft = (T l/i l ) = ( F (2, q/r,) T), index i runs over all electrons and nuclei. This integral can be calculated very easily the integrand is antisymmetric with respect to inversion and therefore ft = 0. Let us stress that our conclusion pertains to the total wave function, which has to reflect the space isotropy leading to the zero dipole moment, because all orientations in space are equally probable. If one applied the transformation r -r only to some particles in the molecule (e.g., electrons), and not to the other ones (e.g., the nuclei), then the wave function will show no parity (it would be neither symmetric nor antisymmetric). We do this in the adiabatic or Born-Oppenheimer approximation, where the electronic wave function depends on the electronic coordinates only. This explains why the integral ft = ( F F) (the integration is over electronic coordinates only) does not equal zero for some molecules (which we call polar). Thus, to calculate the dipole moment we have to use the adiabatic or the Born-Oppenheimer approximation. [Pg.6]


See other pages where Inverse Born-Oppenheimer approximation is mentioned: [Pg.25]    [Pg.27]    [Pg.409]    [Pg.407]    [Pg.314]    [Pg.355]    [Pg.100]    [Pg.828]    [Pg.110]    [Pg.112]    [Pg.35]    [Pg.828]    [Pg.173]    [Pg.99]    [Pg.29]    [Pg.932]    [Pg.337]    [Pg.72]    [Pg.112]    [Pg.289]    [Pg.287]    [Pg.264]    [Pg.217]    [Pg.834]   
See also in sourсe #XX -- [ Pg.630 , Pg.647 , Pg.649 , Pg.650 ]




SEARCH



Born approximation

Born-Oppenheimer approximation

Inverse approximation

Oppenheimer approximation

© 2024 chempedia.info