Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intramolecular vibrational energy time independent

The fundamental assumption of RRKM theory is that the classical motion of the reactant is sufficiently chaotic so that a micro-canonical ensemble of states is maintained as the reactant decomposes [6,324]. This assumption is often referred to as one of a rapid intramolecular vibrational energy redistribution (IVR) [12]. By making this assumption, at any time k E) is given by Eq. (62). As a result of the fixed time-independent rate constant k(E), N(t) decays exponentially, i.e.. [Pg.207]

The first step in a unimolecular reaction involves energizing the reactant molecule above its decomposition threshold. An accurate description of the ensuing unimolecular reaction requires an understanding of the state prepared by this energization process. In the first part of this chapter experimental procedures for energizing a reactant molecule are reviewed. This is followed by a description of the vibrational/rotational states prepared for both small and large molecules. For many experimental situations a superposition state is prepared, so that intramolecular vibrational energy redistribution (IVR) may occur (Parmenter, 1982). IVR is first discussed quantum mechanically from both time-dependent and time-independent perspectives. The chapter ends with a discussion of classical trajectory studies of IVR. [Pg.67]

The concept of intramolecular vibrational energy redistribution (IVR) can be formulated from both time-dependent and time-independent viewpoints (Li et al., 1992 Sibert et al., 1984a). IVR is often viewed as an explicitly time-dependent phenomenon, in which a nonstationary superposition state, as described above, is initially prepared and evolves in time. Energy flows out of the initially excited zero-order mode, which may be localized in one part of the molecule, to other zero-order modes and, consequently, other parts of the molecule. However, delocalized zero-order modes are also possible. The nonstationary state initially prepared is often referred to as the bright state, as it carries oscillator strength for the spectroscopic transition of interest, and IVR results in the flow of amplitude into the manifold of so-called dark states that are not excited directly. It is of interest to understand what physical interactions couple different zero-order modes, allowing energy to flow between them. A particular type of superposition state that has received considerable study are A/-H local modes (overtones), where M is a heavy atom (Child and Halonen, 1984 Hayward and Henry, 1975 Watson et al., 1981). [Pg.81]


See other pages where Intramolecular vibrational energy time independent is mentioned: [Pg.352]    [Pg.626]    [Pg.42]    [Pg.43]    [Pg.22]    [Pg.331]    [Pg.31]    [Pg.102]   
See also in sourсe #XX -- [ Pg.96 ]




SEARCH



Energy vibrational

Independence, energy

Intramolecular vibrational

Intramolecular vibrational energy

Intramolecular vibrations

Intramolecular vibrations, energy

Time Independence

Time-independent

Vibration energy

Vibration time

© 2024 chempedia.info