Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interspecies assessment factor, selection

In the following text, various studies will be described, which attempt to establish a scientific rationale for the selection of the interspecies assessment factor. Based on these studies, it can be concluded that a species-specific default factor based on differences in caloric requirement (see Table 5.4) should be used for interspecies extrapolation regarding metabolic size. The remaining interspecies differences should preferentially be described probabilistically, or a deterministic default factor of 2.5 could be used for extrapolation of data from rat studies to the human situation. [Pg.237]

Gronlund (1992) has investigated methods used for quantitative risk assessment of non-genotoxic substances, with special regard to the selection of assessment factors. Gronlund found that humans, in most cases, seem to be more sensitive to the toxic effects of chemicals than experimental animals, and that the traditional 10-fold factor for interspecies differences apparently is too small in order to cover the real variation. It was also noted that a general interspecies factor to cover all types of chemicals and all types of experimental animals cannot be expected. It was concluded that a 10-fold factor for interspecies variability probably protects a majority, but not all of the population, provided that the dose correction for differences in body size between experimental animals and humans is performed by the body surface area approach (Section 5.3.2.2). If the dose correction is based on the body weight approach (Section 5.3.2.1), the 10-fold factor was considered to be too small in most cases. [Pg.238]


See other pages where Interspecies assessment factor, selection is mentioned: [Pg.98]    [Pg.18]    [Pg.255]    [Pg.321]    [Pg.46]    [Pg.436]    [Pg.376]   


SEARCH



Factor selection

Interspecies

Selectivity factor

© 2024 chempedia.info