Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interpore dispersion

Figure 25.1 Heterogeneity is one of the main properties of porous media it not only characterizes the scales shown in the figure, but also occurs on larger scales up to the size of the whole porous system. Three important mechanisms of transport and mixing in porous media are (a) interpore dispersion caused by mixing of pore channels (b) intrapore dispersion caused by nonuniform velocity distribution and mixing in individual channels (c) dispersion and retardation of solute transport caused by molecular diffusion between open and dead-end pores as well as between the water and the... Figure 25.1 Heterogeneity is one of the main properties of porous media it not only characterizes the scales shown in the figure, but also occurs on larger scales up to the size of the whole porous system. Three important mechanisms of transport and mixing in porous media are (a) interpore dispersion caused by mixing of pore channels (b) intrapore dispersion caused by nonuniform velocity distribution and mixing in individual channels (c) dispersion and retardation of solute transport caused by molecular diffusion between open and dead-end pores as well as between the water and the...
In porous media the flow of water and the transport of solutes is complex and three-dimensional on all scales (Fig. 25.1). A one-dimensional description needs an empirical correction that takes account of the three-dimensional structure of the flow. Due to the different length and irregular shape of the individual pore channels, the flow time between two (macroscopically separated) locations varies from one channel to another. As discussed for rivers (Section 24.2), this causes dispersion, the so-called interpore dispersion. In addition, the nonuniform velocity distribution within individual channels is responsible for intrapore dispersion. Finally, molecular diffusion along the direction of the main flow also contributes to the longitudinal dispersion/ diffusion process. For simplicity, transversal diffusion (as discussed for rivers) is not considered here. The discussion is limited to the one-dimensional linear case for which simple calculations without sophisticated computer programs are possible. [Pg.1155]

Lindstrom and Boersma (1971) pioneered the prediction of breakthrough curves from equivalent cylindrical pore size distributions, determined by either the water retention or mercury porosimetry methods. The model developed by these authors includes the effects of bothintra- and interpore dispersion. In general, dispersion due to differences in tube size has a much greater influence on the shape and position of the breakthrough curve than mixing within tubes due to microscopic velocity profiles (Rao et al., 1976). For completeness, however, it is preferable to include both effects. Lindstrom and Boersma (1971) defined a CDE for each tube, so that C/C0 for the bundle as a whole is given by ... [Pg.108]


See other pages where Interpore dispersion is mentioned: [Pg.132]   


SEARCH



© 2024 chempedia.info