Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Internal, energy field

The major mechanism of a vapor cloud explosion, the feedback in the interaction of combustion, flow, and turbulence, can be readily found in this mathematical model. The combustion rate, which is primarily determined by the turbulence properties, is a source term in the conservation equation for the fuel-mass fraction. The attendant energy release results in a distribution of internal energy which is described by the equation for conservation of energy. This internal energy distribution is translated into a pressure field which drives the flow field through momentum equations. The flow field acts as source term in the turbulence model, which results in a turbulent-flow structure. Finally, the turbulence properties, together with the composition, determine the rate of combustion. This completes the circle, the feedback in the process of turbulent, premixed combustion in gas explosions. The set of equations has been solved with various numerical methods e.g., SIMPLE (Patankar 1980) SOLA-ICE (Cloutman et al. 1976). [Pg.111]

It is clear that the change AH in the potential energy, and thus internal energy and enthalpy of the adsorbed molecule, j, with dipole moment Pj due to the presence of the field is ... [Pg.175]

The use of interpenetrating donor-acceptor heterojunctions, such as PPVs/C60 composites, polymer/CdS composites, and interpenetrating polymer networks, substantially improves photoconductivity, and thus the quantum efficiency, of polymer-based photo-voltaics. In these devices, an exciton is photogenerated in the active material, diffuses toward the donor-acceptor interface, and dissociates via charge transfer across the interface. The internal electric field set up by the difference between the electrode energy levels, along with the donor-acceptor morphology, controls the quantum efficiency of the PV cell (Fig. 51). [Pg.202]

Figure 40. Energy diagrams illustrating the difference in values of external electric field of both polarities able to neutralize the internal electric field of asymmetric space charge.62... Figure 40. Energy diagrams illustrating the difference in values of external electric field of both polarities able to neutralize the internal electric field of asymmetric space charge.62...
The observed Schottky-specific heat is due to changes in internal energy that occur when nearly adjacent energy levels are occupied. The degenerate energy levels may be caused by external or internal magnetic fields. [Pg.79]

Table 1.1 Conjugate pairs of variables in work terms for the fundamental equation for the internal energy U. Here/is force of elongation, Z is length in the direction of the force, <7 is surface tension, As is surface area, , is the electric potential of the phase containing species i, qi is the contribution of species i to the electric charge of a phase, E is electric field strength, p is the electric dipole moment of the system, B is magnetic field strength (magnetic flux density), and m is the magnetic moment of the system. The dots indicate scalar products of vectors. Table 1.1 Conjugate pairs of variables in work terms for the fundamental equation for the internal energy U. Here/is force of elongation, Z is length in the direction of the force, <7 is surface tension, As is surface area, <Z>, is the electric potential of the phase containing species i, qi is the contribution of species i to the electric charge of a phase, E is electric field strength, p is the electric dipole moment of the system, B is magnetic field strength (magnetic flux density), and m is the magnetic moment of the system. The dots indicate scalar products of vectors.
In general, dw is written in the form (intensive variable)-d(extensive variable) or as a product of a force times a displacement of some kind. Several types of work terms may be involved in a single thermodynamic system, and electrical, mechanical, magnetic and gravitational fields are of special importance in certain applications of materials. A number of types of work that may be involved in a thermodynamic system are summed up in Table 1.1. The last column gives the form of work in the equation for the internal energy. [Pg.5]

Magnetic contributions to the Gibbs energy due to an internal magnetic field are present in all magnetically ordered materials. An additional energetic contribution... [Pg.37]


See other pages where Internal, energy field is mentioned: [Pg.873]    [Pg.2006]    [Pg.2890]    [Pg.105]    [Pg.413]    [Pg.228]    [Pg.376]    [Pg.174]    [Pg.411]    [Pg.467]    [Pg.66]    [Pg.363]    [Pg.714]    [Pg.715]    [Pg.591]    [Pg.644]    [Pg.85]    [Pg.128]    [Pg.343]    [Pg.211]    [Pg.107]    [Pg.668]    [Pg.351]    [Pg.35]    [Pg.98]    [Pg.45]    [Pg.373]    [Pg.206]    [Pg.277]    [Pg.108]    [Pg.15]    [Pg.126]    [Pg.145]    [Pg.360]    [Pg.222]    [Pg.38]    [Pg.93]    [Pg.440]    [Pg.336]    [Pg.208]    [Pg.33]    [Pg.220]   
See also in sourсe #XX -- [ Pg.80 , Pg.345 ]

See also in sourсe #XX -- [ Pg.80 , Pg.346 ]




SEARCH



Internal energy

© 2024 chempedia.info