Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intermolecular theory

This result can be deduced from a number of perspectives such as renormalized perturbation theory [93], polymer density fimctional theory [95,96], and Per-cus functional expansion methods [97]. The medium-induced pair potential is determined by the direct correlation function and collective density fluctuations which are both functionally related to the intramolecular pair correlations via the PRISM equation. Hence, a coupled intramolecular/intermolecular theory is obtained. [Pg.371]

Fowler [8] used the above intermolecular theory to calculate the energy required to break a column of liquid of unit cross section and remove the two halves to infinite separation. Using statistical thermodynamics he calculated the work of cohesion and found it to be equal to twice the surface tension. [Pg.344]

Stone A J 1996 The Theory of Intermolecular Forces (New York Oxford)... [Pg.211]

Claverie P 1971 Theory of intermolecular forces. I. On the inadequacy of the usual Rayleigh-Schrddinger perturbation method for the treatment of intermolecular forces Int. J. Quantum Chem. 5 273... [Pg.213]

Jeziorski B, Moszynski R and Szalewicz K 1994 Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes Chem. Rev. 94 1887... [Pg.213]

Adams W H 1994 The polarization approximation and the Amos-Musher intermolecular perturbation theories compared to infinite order at finite separation Chem. Phys. Lett. 229 472... [Pg.213]

Bukowski R, Sadie] J, Jeziorski B, Jankowski P, Szalewicz K, Kucharski S A, Williams H L and Rice B M 1999 Intermolecular potential of carbon dioxide dimer from symmetry-adapted perturbation theory J. Chem. Phys. 110 3785... [Pg.213]

Hayes I C and Stone A J 1984 An intermolecular perturbation theory for the region of moderate overlap Mol. Phys. 53 83... [Pg.213]

Margenau H and KesPierN R 1971 Theory of Intermolecular Forces 2nd edn (New York Pergamon)... [Pg.217]

Stillinger F 1973 Structure in aqueous solutions from the standpoint of scaled particle theory J. Solution Chem. 2 141 Widom B 1967 Intermolecular forces and the nature of the liquid state Sc/e/ ce 375 157 Longuet-Higgins H C and Widom B 1964 A rigid sphere model for the melting of argon Mol. Phys. 8 549... [Pg.557]

The concept of corresponding states was based on kinetic molecular theory, which describes molecules as discrete, rapidly moving particles that together constitute a fluid or soHd. Therefore, the theory of corresponding states was a macroscopic concept based on empirical observations. In 1939, the theory of corresponding states was derived from an inverse sixth power molecular potential model (74). Four basic assumptions were made (/) classical statistical mechanics apply, (2) the molecules must be spherical either by actual shape or by virtue of rapid and free rotation, (3) the intramolecular vibrations are considered identical for molecules in either the gas or Hquid phases, and (4) the potential energy of a coUection of molecules is a function of only the various intermolecular distances. [Pg.239]

It follows from this discussion that all of the transport properties can be derived in principle from the simple kinetic dreoty of gases, and their interrelationship tlu ough k and c leads one to expect that they are all characterized by a relatively small temperature coefficient. The simple theory suggests tlrat this should be a dependence on 7 /, but because of intermolecular forces, the experimental results usually indicate a larger temperature dependence even up to for the case of molecular inter-diffusion. The Anhenius equation which would involve an enthalpy of activation does not apply because no activated state is involved in the transport processes. If, however, the temperature dependence of these processes is fitted to such an expression as an algebraic approximation, tlren an activation enthalpy of a few kilojoules is observed. It will thus be found that when tire kinetics of a gas-solid or liquid reaction depends upon the transport properties of the gas phase, the apparent activation entlralpy will be a few kilojoules only (less than 50 kJ). [Pg.112]

Zwitterionic L-alanine ( HjN—CfCHj)—CO2—) is a dipolar molecule that forms large well-ordered crystals in which the molecules form hydrogen-bonded columns. The strong interactions lead to the presence of well-defined intra- and intermolecular vibrations that can usefully be described using hannonic theory. [Pg.246]

When the mass of the tunneling particle is extremely small, it tunnels in the one-dimensional static barrier. With increasing mass, the contribution from the intermolecular vibrations also increases, and this leads to a weaker mass dependence of k, than that predicted by the onedimensional theory. That is why the strong isotope H/D effect is observed along with a weak k m) dependence for heavy transferred particles, as illustrated in fig. 18. It is this circumstance that makes the transfer of heavy reactants (with masses m < 20-30) possible. [Pg.36]

Several colloidal systems, that are of practical importance, contain spherically symmetric particles the size of which changes continuously. Polydisperse fluid mixtures can be described by a continuous probability density of one or more particle attributes, such as particle size. Thus, they may be viewed as containing an infinite number of components. It has been several decades since the introduction of polydispersity as a model for molecular mixtures [73], but only recently has it received widespread attention [74-82]. Initially, work was concentrated on nearly monodisperse mixtures and the polydispersity was accounted for by the construction of perturbation expansions with a pure, monodispersive, component as the reference fluid [77,80]. Subsequently, Kofke and Glandt [79] have obtained the equation of state using a theory based on the distinction of particular species in a polydispersive mixture, not by their intermolecular potentials but by a specific form of the distribution of their chemical potentials. Quite recently, Lado [81,82] has generalized the usual OZ equation to the case of a polydispersive mixture. Recently, the latter theory has been also extended to the case of polydisperse quenched-annealed mixtures [83,84]. As this approach has not been reviewed previously, we shall consider it in some detail. [Pg.154]

The semiempirical methods combine experimental data with theory as a way to circumvent the calculational difficulties of pure theory. The first of these methods leads to what are called London-Eyring-Polanyi (LEP) potential energy surfaces. Consider the triatomic ABC system. For any pair of atoms the energy as a function of intermolecular distance r is represented by the Morse equation, Eq. (5-16),... [Pg.196]

In a solution of a solute in a solvent there can exist noncovalent intermolecular interactions of solvent-solvent, solvent-solute, and solute—solute pairs. The noncovalent attractive forces are of three types, namely, electrostatic, induction, and dispersion forces. We speak of forces, but physical theories make use of intermolecular energies. Let V(r) be the potential energy of interaction of two particles and F(r) be the force of interaction, where r is the interparticle distance of separation. Then these quantities are related by... [Pg.391]

Recall that regular solution theory deals with nonpolar solvents, for which the dispersion force is expected to be a major contributor to intermolecular interactions. The dispersion energy, from Eq. (8-15), is for 1-2 interactions... [Pg.414]

The ab initio methods used by most investigators include Hartree-Fock (FFF) and Density Functional Theory (DFT) [6, 7]. An ab initio method typically uses one of many basis sets for the solution of a particular problem. These basis sets are discussed in considerable detail in references [1] and [8]. DFT is based on the proof that the ground state electronic energy is determined completely by the electron density [9]. Thus, there is a direct relationship between electron density and the energy of a system. DFT calculations are extremely popular, as they provide reliable molecular structures and are considerably faster than FFF methods where correlation corrections (MP2) are included. Although intermolecular interactions in ion-pairs are dominated by dispersion interactions, DFT (B3LYP) theory lacks this term [10-14]. FFowever, DFT theory is quite successful in representing molecular structure, which is usually a primary concern. [Pg.153]

In view of the complications of the intermolecular potential (as compared to the interatomic potential of the rare gas atoms) the comparisons for molecules in Tables II, III, and IV should be judged with caution. The apparent discrepancies from the theories for single atoms can be misleading. An example is the calculation for CH4 on the Slater-Kirkwood theory where Table IV shows the absurd value of 24 for the effective number of electrons. Pitzer and Catalano32 have applied the Slater-Kirkwood equation to the intermolecular potential of CH4 by addition of all the individual atom interactions and, with N = 4 for carbon and 1 for hydrogen, obtained agreement within 5 per cent for the London energy at the potential minimum. [Pg.74]


See other pages where Intermolecular theory is mentioned: [Pg.548]    [Pg.599]    [Pg.1136]    [Pg.3161]    [Pg.101]    [Pg.162]    [Pg.88]    [Pg.548]    [Pg.599]    [Pg.1136]    [Pg.3161]    [Pg.101]    [Pg.162]    [Pg.88]    [Pg.61]    [Pg.1263]    [Pg.55]    [Pg.74]    [Pg.123]    [Pg.368]    [Pg.248]    [Pg.74]    [Pg.50]    [Pg.57]    [Pg.115]    [Pg.128]    [Pg.695]    [Pg.1215]    [Pg.348]    [Pg.69]    [Pg.366]    [Pg.197]    [Pg.46]    [Pg.151]   
See also in sourсe #XX -- [ Pg.15 ]




SEARCH



Density functional theory intermolecular forces

Density functional theory intermolecular interactions, electron

Intermolecular forces force theory long range

Intermolecular forces, theory

Intermolecular interaction energy perturbation-theory approach

Intermolecular perturbation theory

Intermolecular perturbation theory IMPT)

Intermolecular potentials cell theories

Limitations of Intermolecular Potential Theory

Long-range intermolecular force theory

Perturbation theory for intermolecular interactions

Perturbation theory intermolecular interactions

Perturbation theory weak intermolecular interaction calculations

Second order perturbation theory intermolecular interaction, electron

Symmetry adapted perturbation theory intermolecular interactions

Symmetry-adapted perturbation theory intermolecular forces

THEORY OF INTERMOLECULAR INTERACTIONS

© 2024 chempedia.info