Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potential difference, interfacial partition equilibrium

Although the equilibrium principle was available (equality of electrochemical potential of each ion that reversibly equilibrates across an immiscible liquid/liquid interface), the elementary theory and consequences were not explored until recently (6). To develop an interfacial potential difference (pd) at a liquid interface, two ions M, X that partition are required. However,... [Pg.363]

The interfacial potential difference (pd) for the partition equilibrium interface is given by the equality of electrochemical potential in terms of all ions in equilibrium, equation (4). [Pg.367]

Interface between two liquid solvents — Two liquid solvents can be miscible (e.g., water and ethanol) partially miscible (e.g., water and propylene carbonate), or immiscible (e.g., water and nitrobenzene). Mutual miscibility of the two solvents is connected with the energy of interaction between the solvent molecules, which also determines the width of the phase boundary where the composition varies (Figure) [i]. Molecular dynamic simulation [ii], neutron reflection [iii], vibrational sum frequency spectroscopy [iv], and synchrotron X-ray reflectivity [v] studies have demonstrated that the width of the boundary between two immiscible solvents comprises a contribution from thermally excited capillary waves and intrinsic interfacial structure. Computer calculations and experimental data support the view that the interface between two solvents of very low miscibility is molecularly sharp but with rough protrusions of one solvent into the other (capillary waves), while increasing solvent miscibility leads to the formation of a mixed solvent layer (Figure). In the presence of an electrolyte in both solvent phases, an electrical potential difference can be established at the interface. In the case of two electrolytes with different but constant composition and dissolved in the same solvent, a liquid junction potential is temporarily formed. Equilibrium partition of ions at the - interface between two immiscible electrolyte solutions gives rise to the ion transfer potential, or to the distribution potential, which can be described by the equivalent two-phase Nernst relationship. See also - ion transfer at liquid-liquid interfaces. [Pg.358]


See other pages where Potential difference, interfacial partition equilibrium is mentioned: [Pg.2660]    [Pg.154]    [Pg.5575]    [Pg.5925]    [Pg.871]    [Pg.281]    [Pg.102]    [Pg.98]    [Pg.118]    [Pg.222]    [Pg.342]   


SEARCH



Difference potential

Equilibrium differences

Equilibrium partitioning

Equilibrium potentials

Interfacial potential difference

Partition equilibrium

Partitioning, interfacial

Potential interfacial

© 2024 chempedia.info