Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Insertion reactions compounds

Insertion Reactions. Isocyanates also may undergo iasertion reactions with C—H bonds. Acidic compounds, such as 1,3-dicarbonyl compounds (6), react readily at room temperature to form carboxyamides. At higher temperatures carboxyamides frequentiy undergo secondary reactions leading to cyclized products (33,34). [Pg.449]

Organometallic Compounds. Mononuclear carbon monoxide complexes of palladium are relatively uncommon because of palladium s high labihty, tendency to be reduced, and competing migratory insertion reactions in the presence of a Pd—C bond (201). A variety of multinuclear compounds... [Pg.182]

Thorium compounds of anionic nitrogen-donating species such as [Th(NR2)4], where R = alkyl or sdyl, are weU-known. The nuclearity is highly dependent on the steric requirements of R. Amides are extremely reactive, readily undergoing protonation to form amines or insertion reactions with CO2, COS, CS2, and CSe2 to form carbamates. Tetravalent thorium thiocyanates have been isolated as hydrated species, eg, Th(NCS)4(H20)4 [17837-16-0] or as complex salts, eg, M4 Th(NCS)g] vvH20, where M = NH, Rb, or Cs. [Pg.38]

The phosphido complex, Th(PPP)4 [143329-04-0], where PPP = P(CH2CH2P(CH2)2)2) has been prepared and fully characterized (35) and represents the first actinide complex containing exclusively metal—phosphoms bonds. The x-ray stmctural analysis indicated 3-3-electron donor phosphides and 1-1-electron phosphide, suggesting that the complex is formally 22-electron. Similar to the amido system, this phosphido compound is also reactive toward insertion reactions, especially with CO, which undergoes a double insertion (35,36). [Pg.38]

Reactions of Organic nuorine Compounds Table 31. Insertion Reactions of Iminoborones [11S ... [Pg.609]

The thiazyl cation is used for the preparation of other important S-N compounds (Scheme 5.3). For example, the insertion reactions with S4N4... [Pg.91]

Bis(cyclopentadienyl)zirconium 1,3-alkadiene complexes19-20 show interesting stepwise double insertion reactions to carbonyl compounds, exploration with respect to their stereochemical features has only just begun21-23. [Pg.402]

Alkyl compounds can be synthesized by substitution, oxidative addition and insertion reactions... [Pg.219]

The highly reactive species methylene inserts into C—H bonds,both aliphatic and aromatic,though with aromatic compounds ring expansion is also possible (see 15-62). This version of the reaction is useless for synthetic purposes because of its nonselectivity (see p. 248). This contrasts with the metal carbene insertion reaction, which can be highly selective, and is very useful in synthesis. Alkylcarbenes usually rearrange rather than give insertion (p. 249), but, when this is impossible. [Pg.789]

That this mechanism can take place under suitable conditions has been demonstrated by isotopic labeling and by other means. However, the formation of disproportionation and dimerization products does not always mean that the free-radical abstraction process takes place. In some cases these products arise in a different manner.We have seen that the product of the reaction between a carbene and a molecule may have excess energy (p. 247). Therefore it is possible for the substrate and the carbene to react by mechanism 1 (the direct-insertion process) and for the excess energy to cause the compound thus formed to cleave to free radicals. When this pathway is in operation, the free radicals are formed after the actual insertion reaction. [Pg.790]

In this section, the reactivities of organosilicon compounds for the Friedel-Crafts alkylation of aromatic compounds in the presence of aluminum chloride catalyst and the mechanism of the alkylation reactions will be discus.sed, along with the orientation and isomer distribution in the products and associated problems such as the decomposition of chloroalkylsilanes to chlorosilanes.. Side reactions such as transalkylation and reorientation of alkylated products will also be mentioned, and the insertion reaction of allylsilylation and other related reactions will be explained. [Pg.146]

The subjects of structure and bonding in metal isocyanide complexes have been discussed before 90, 156) and will not be treated extensively here. A brief discussion of this subject is presented in Section II of course, special emphasis is given to the more recent information which has appeared. Several areas of current study in the field of transition metal-isocyanide complexes have become particularly important and are discussed in this review in Section III. These include the additions of protonic compounds to coordinated isocyanides, probably the subject most actively being studied at this time insertion reactions into metal-carbon bonded species nucleophilic reactions with metal isocyanide complexes and the metal-catalyzed a-addition reactions. Concurrent with these new developments, there has been a general expansion of descriptive chemistry of isocyanide-metal complexes, and further study of the physical properties of selected species. These developments are summarized in Section IV. [Pg.22]

In the reaction of Ni(CNBu )4 and methyl iodide oligomerization of the isocyanide was observed the only isolable nickel complex was (I), shown below. This product is believed to arise through sequential insertions of three isocyanides into a nickel-carbon bond. Upon further treatment with additional isocyanide at a temperature greater than 60° C one obtains a polymer (RNC) presumably through multiple isocyanide insertion reactions. The addition of benzoyl chloride to Ni(CNBu )4 gave two isolable compounds Ni(CNBu )3(COPh)Cl (74%) and (II) (8.2%). This latter reaction, and the isolation of (II) in particular, suggests that the proposed mechanism for polymerization of isocyanides is reasonable. [Pg.32]

Insertion Reactions of Transition Metal-Carbon -Bonded Compounds I Carbon Monoxide Insertion... [Pg.87]

Infrared Intensities of Metal Carbonyl Stretching Vibrations, 10, 199 Infrared and Raman Studies of w-Complexes, 1, 239 Insertion Reactions of Compounds of Metals and Metalloids, 5, 225 Insertion Reactions of Transition Metal-Carbon o-Bonded Compounds I Carbon Monoxide Insertion, 11, 88... [Pg.509]

In the same area, good levels of enantioselectivity have been achieved in intramolecular C H insertion reactions of a-diazocarbonyl compounds... [Pg.352]

These intermediates undergo addition reactions with alkenes and aromatic compounds and insertion reactions with saturated hydrocarbons.254... [Pg.946]

Sulfonylnitrenes are formed by thermal decomposition of sulfonyl azides. Insertion reactions occur with saturated hydrocarbons.255 With aromatic compounds the main products are formally insertion products, but they are believed to be formed through addition intermediates. [Pg.947]

Insertion (intercalation) compounds. Insertion compounds are defined as products of a reversible reaction of suitable crystalline host materials with guest molecules (ions). Guests are introduced into the host lattice, whose structure is virtually intact except for a possible increase of some lattice constants. This reaction is called topotactic. A special case of topotactic insertion is reaction with host crystals possessing stacked layered structure. In this case, we speak about intercalation (from the Latin verb intercalare, used originally for inserting an extra month, mensis intercalarius, into the calendar). [Pg.327]


See other pages where Insertion reactions compounds is mentioned: [Pg.653]    [Pg.2492]    [Pg.653]    [Pg.2492]    [Pg.167]    [Pg.150]    [Pg.428]    [Pg.41]    [Pg.333]    [Pg.640]    [Pg.260]    [Pg.664]    [Pg.195]    [Pg.151]    [Pg.56]    [Pg.70]    [Pg.29]    [Pg.29]    [Pg.333]    [Pg.208]    [Pg.20]    [Pg.177]    [Pg.29]    [Pg.47]    [Pg.69]   
See also in sourсe #XX -- [ Pg.201 ]




SEARCH



Coordination compounds insertion reactions

Insertion Reactions of Transition Metal-Carbon cr-Bonded Compounds. II. Sulfur Dioxide

Insertion Reactions of Transition Metal-Carbon cr-Bonded Compounds. II. Sulfur Dioxide and Other Molecules

Insertion compounds

Insertion reactions

Insertion reactions carbon compounds

Insertion reactions propargylic compounds

Insertion reactions with phosphorus compounds

Insertion reactions with sulfur compounds

Nitrogen Insertion Reactions of Ring Compounds

Organometallic compounds nickel insertion reactions

Rhodium compounds, catalysis insertion reactions

Unsaturated compounds insertion reactions

© 2024 chempedia.info