Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Initial velocity inhibitors affecting

An inhibitor that binds exclusively to the ES complex, or a subsequent species, with little or no affinity for the free enzyme is referred to as uncompetitive. Inhibitors of this modality require the prior formation of the ES complex for binding and inhibition. Hence these inhibitors affect the steps in catalysis subsequent to initial substrate binding that is, they affect the ES —> ES1 step. One might then expect that these inhibitors would exclusively affect the apparent value of Vm and not influence the value of KM. This, however, is incorrect. Recall, as illustrated in Figure 3.1, that the formation of the ESI ternary complex represents a thermodynamic cycle between the ES, El, and ESI states. Hence the augmentation of the affinity of an uncompetitive inhibitor that accompanies ES complex formation must be balanced by an equal augmentation of substrate affinity for the El complex. The result of this is that the apparent values of both Vmax and Ku decrease with increasing concentrations of an uncompetitive inhibitor (Table 3.3). The velocity equation for uncompetitive inhibition is as follows ... [Pg.67]

Figure 6.2 Effect of preincubation time with inhibitor on the steady state velocity of an enzymatic reaction for a very slow binding inhibitor. (A) Preincubation time dependence of velocity in the presence of a slow binding inhibitor that conforms to the single-step binding mechanism of scheme B of Figure 6.3. (B) Preincubation time dependence of velocity in the presence of a slow binding inhibitor that conforms to the two-step binding mechanism of scheme C of Figure 6.3. Note that in panel B both the initial velocity (y-intercept values) and steady state velocity are affected by the presence of inhibitor in a concentration-dependent fashion. Figure 6.2 Effect of preincubation time with inhibitor on the steady state velocity of an enzymatic reaction for a very slow binding inhibitor. (A) Preincubation time dependence of velocity in the presence of a slow binding inhibitor that conforms to the single-step binding mechanism of scheme B of Figure 6.3. (B) Preincubation time dependence of velocity in the presence of a slow binding inhibitor that conforms to the two-step binding mechanism of scheme C of Figure 6.3. Note that in panel B both the initial velocity (y-intercept values) and steady state velocity are affected by the presence of inhibitor in a concentration-dependent fashion.
Fig. 11. Effect of substrate concentration on the initial velocity of inhibited reactions. Maximal velocity (V), illustrated by the dashed lines, is unaffected by a competitive inhibitor, it is reduced (by 50% in this example) by a non-competitive inhibitor, is increased to by a competitive inhibitor, it is not affected by a non-... Fig. 11. Effect of substrate concentration on the initial velocity of inhibited reactions. Maximal velocity (V), illustrated by the dashed lines, is unaffected by a competitive inhibitor, it is reduced (by 50% in this example) by a non-competitive inhibitor, is increased to by a competitive inhibitor, it is not affected by a non-...
Reversible inhibition occurs rapidly in a system which is near its equilibrium point and its extent is dependent on the concentration of enzyme, inhibitor and substrate. It remains constant over the period when the initial reaction velocity studies are performed. In contrast, irreversible inhibition may increase with time. In simple single-substrate enzyme-catalysed reactions there are three main types of inhibition patterns involving reactions following the Michaelis-Menten equation competitive, uncompetitive and non-competitive inhibition. Competitive inhibition occurs when the inhibitor directly competes with the substrate in forming the enzyme complex. Uncompetitive inhibition involves the interaction of the inhibitor with only the enzyme-substrate complex, while non-competitive inhibition occurs when the inhibitor binds to either the enzyme or the enzyme-substrate complex without affecting the binding of the substrate. The kinetic modifications of the Michaelis-Menten equation associated with the various types of inhibition are shown below. The derivation of these equations is shown in Appendix S.S. [Pg.289]


See other pages where Initial velocity inhibitors affecting is mentioned: [Pg.23]    [Pg.379]    [Pg.333]   
See also in sourсe #XX -- [ Pg.68 , Pg.68 , Pg.69 ]




SEARCH



Initial velocity

Initiation inhibitors

Velocity inhibitors affecting

© 2024 chempedia.info