Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Infrared spectroscopy vibrational structure

From Equation (2.2) and Equation (2.3), it becomes obvious that the vibrational frequencies are very sensitive to the structure of the investigated compound, and this is the basis for the widespread application of infrared spectroscopy for structure elucidation. [Pg.10]

Much earlier information on the structure of diazonium ions than that derived from X-ray analyses (but still useful today) was obtained by infrared spectroscopy. The pioneers in the application of this technique to diazonium and diazo compounds were Le Fevre and his school, who provided the first IR evidence for the triple bonds by identifying the characteristic stretching vibration band at 2260 cm-1 (Aroney et al., 1955 see also Whetsel et al., 1956). Its frequency lies between the Raman frequency of dinitrogen (2330 cm-1, Schrotter, 1970) and the stretching vibration frequency of the C = N group in benzonitrile (2255 cm-1, Aroney et al., 1955). In substituted benzenediazonium salts the frequency of the NN stretching vibration follows Hammett op relationships. Electron donor substituents reduce the frequency, whereas acceptor substituents increase it. The 4-dimethylamino group, for example, shifts it by 103 cm-1 to 2177 cm-1 (Nuttall et al., 1961). This result supports the hypothesis that... [Pg.75]

The results presented here for silicas and aluminas illustrate that there is a wealth of structural information in the infrared spectra that has not previously been recognized. In particular, it was found that adsorbed water affects the lattice vibrations of silica, and that particle-particle Interactions affect the vibrations of surface species. In the case of alumina, it was found that aluminum oxides and hydroxides could be distinguished by their infrared spectra. The absence of spectral windows for photoacoustic spectroscopy allowed more complete band identification of adsorbed surface species, making distinctions between different structures easier. The ability to perform structural analyses by infrared spectroscopy clearly indicates the utility of photoacoustic spectroscopy. [Pg.461]

Most of what we know about the structure of atoms and molecules has been obtained by studying the interaction of electromagnetic radiation with matter. Line spectra reveal the existence of shells of different energy where electrons are held in atoms. From the study of molecules by means of infrared spectroscopy we obtain information about vibrational and rotational states of molecules. The types of bonds present, the geometry of the molecule, and even bond lengths may be determined in specific cases. The spectroscopic technique known as photoelectron spectroscopy (PES) has been of enormous importance in determining how electrons are bound in molecules. This technique provides direct information on the energies of molecular orbitals in molecules. [Pg.83]

Unstable conformers of trans- and cis-hexatriene have been detected by means of the combination of matrix-isolation infrared spectroscopy and photoexcitation (or the high-temperature nozzle technique)84. Ab initio MO calculations at the HF/6-31G level have been performed for several conformers of 1,3,5-hexatriene93. The observed infrared bands of unstable conformers have been attributed to the gTt (major species) and gTg (minor species) conformers of /raw.s -hexalricne and the gCt conformer of cw-hexatriene93. It is noted that, in the previous paper93, the notation c is used for twisted structures for the sake of simplicity. The calculated torsional angles around C—C bonds for the gTt, gTg and gCt conformers are in the range between 32° and 45°. The observed and calculated vibrational frequencies of gTt and gCt are reported in Reference 93. [Pg.166]

The dipole and polarization selection rules of microwave and infrared spectroscopy place a restriction on the utility of these techniques in the study of molecular structure. However, there are complementary techniques that can be used to obtain rotational and vibrational spectrum for many other molecules as well. The most useful is Raman spectroscopy. [Pg.283]

Infrared spectroscopy is an excellent tool in iminoborane chemistry, which readily permits, to distinguish between iminoboranes and nitrile-borane adducts and to identify monomeric and dimeric forms of iminoboranes. This event is due to the fact that the i>CN of CN multiple bonds absorbs outside the fingerprint region and can be considered to be a valuable group frequency even when mixed with other vibrational modes. In some cases other vibrations like NH, BH, B-halogen or B-S stretching modes are helpful for determining the structure of iminoboranes. [Pg.60]

Subtractively normalized interfacial Fourier transform infrared spectroscopy has been used to follow the reorientations of isoquinoline molecules adsorbed at a mercury electrode. Field induced infrared absorption is a major contribution to the intensities of the vibrational band structure of aromatic organic molecules adsorbed on mercury. Adsorbed isoquinoline was observed to go through an abrupt reorientation at potentials more negative than about -0.73 V vs SCE (the actual transition potential being dependent on the bulk solution concentration) to the vertical 6,7 position. [Pg.349]

In general, though, Raman spectroscopy is concerned with vibrational transitions (in a manner akin to infrared spectroscopy), since shifts of these Raman bands can be related to molecular structure and geometry. Because the energies of Raman frequency shifts are associated with transitions between different rotational and vibrational quantum states, Raman frequencies are equivalent to infrared frequencies within the molecule causing the scattering. [Pg.485]

Vibrational spectroscopy techniques are quite suitable for in situ characterization of catalysts. Especially infrared spectroscopy has been used extensively for characterization of the electrode/solution interphases, adsorbed species and their dependence on the electrode potential.33,34 Raman spectroscopy has been used to a lesser extent in characterizing non-precious metal ORR catalysts, most of the studies being related to characterization of the carbon structures.35 A review of the challenges and applications associated with in situ Raman Spectroscopy at metal electrodes has been provided by Pettinger.36... [Pg.339]

Computational simulations [68] suggest the possibility of identifying 7 8 infrared-active vibrational modes that depend on the chiral structure of CNTs. This was supported by experimental infrared spectroscopy [69] of SWCNTs, where features around 1598 and 874 cnT1 were found that could be linked to the calculated results. [Pg.13]

Both Raman and infrared spectroscopy provide qualitative and quantitative information about ehemieal species through the interaetion of radiation with molecular vibrations. Raman spectroscopy complements infrared spectroscopy, particularly for the study of non-polar bonds and certain functional groups. It is often used as an additional technique for elueidating the molecular structure and symmetry of a eompound. Raman spectroseopy also provides facile access to the low frequency region (less than 400 cm Raman shift), an area that is more difficult for infrared speetroseopy. [Pg.13]

Infrared spectroscopy has proven to be a very informative and powerful technique for the characterization of zeolitic materials. Most infrared spectrometers measure the absorption of radiation in the mid-infrared region of the electromagnetic spectrum (4000-400 cm or 2.5-25 xm). In this region of the spectrum, absorption is due to various vibrational modes in the sample. Analysis of these vibrational absorption bands provides information about the chemical species present. This includes information about the structure of the zeolite as well as other functional... [Pg.111]


See other pages where Infrared spectroscopy vibrational structure is mentioned: [Pg.204]    [Pg.519]    [Pg.519]    [Pg.1239]    [Pg.357]    [Pg.106]    [Pg.1136]    [Pg.43]    [Pg.421]    [Pg.249]    [Pg.259]    [Pg.300]    [Pg.30]    [Pg.189]    [Pg.209]    [Pg.404]    [Pg.449]    [Pg.1136]    [Pg.124]    [Pg.15]    [Pg.315]    [Pg.344]    [Pg.347]    [Pg.416]    [Pg.461]    [Pg.473]    [Pg.161]    [Pg.243]    [Pg.351]    [Pg.270]    [Pg.272]    [Pg.132]    [Pg.181]    [Pg.11]    [Pg.2]   
See also in sourсe #XX -- [ Pg.40 , Pg.217 ]




SEARCH



Spectroscopy structure)

Structural infrared

Structural vibration

Vibration /vibrations spectroscopy

Vibration structure

Vibrational infrared

Vibrational spectroscopy infrared

Vibrational structures

© 2024 chempedia.info