Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Infrared spectroscopy complexes

Several indirect proofs could be established. Tsuruta (19) had studied the complexation of different donors including methyl-oxirane on ZnEt and CdEt by infrared spectroscopy. Complexation of methylthiirane by Zn t and by CdMe was investigated respectively by H (20) and (21) spectroscopy. The complexa-... [Pg.204]

Infrared spectroscopy can also be carried out in molecular beams. The primary advantages of beam spectroscopy are tliat it dispenses almost entirely witli monomer absorjitions tliat overlap regions of interest, and tliat tlie complexes are... [Pg.2442]

Most infrared spectroscopy of complexes is carried out in tire mid-infrared, which is tire region in which tire monomers usually absorb infrared radiation. Van der Waals complexes can absorb mid-infrared radiation eitlier witli or without simultaneous excitation of intennolecular bending and stretching vibrations. The mid-infrared bands tliat contain tire most infonnation about intennolecular forces are combination bands, in which tire intennolecular vibrations are excited. Such spectra map out tire vibrational and rotational energy levels associated witli monomers in excited vibrational states and, tluis, provide infonnation on interaction potentials involving excited monomers, which may be slightly different from Arose for ground-state molecules. [Pg.2444]

Anderson D T, Schwartz R L and Todd M W and Lester M I 1998 Infrared spectroscopy and time-resolved dynamics of the ortho-Hj-OH entrance channel complex J. Chem. Phys. 109 3461-73... [Pg.2454]

The formation of such materials may be monitored by several techniques. One of the most useful methods is and C-nmr spectroscopy where stable complexes in solution may give rise to characteristic shifts of signals relative to the uncomplexed species (43). Solution nmr spectroscopy has also been used to detect the presence of soHd inclusion compound (after dissolution) and to determine composition (host guest ratio) of the material. Infrared spectroscopy (126) and combustion analysis are further methods to study inclusion formation. For general screening purposes of soHd inclusion stmctures, the x-ray powder diffraction method is suitable (123). However, if detailed stmctures are requited, the single crystal x-ray diffraction method (127) has to be used. [Pg.74]

We saw in Chapter 12 that mass spectrometry gives a molecule s formula and infrared spectroscopy identifies a molecule s functional groups. Nuclear magnetic resonance spectroscopy does not replace either of these techniques rather, it complements them by "mapping" a molecule s carbon-hydrogen framework. Taken together, mass spectrometry, JR, and NMR make it possible to determine the structures of even very complex molecules. [Pg.440]

The participation of siloxane groups in the reaction increases with the temperature of dehydration of Si02 and quantity of organometallic compound introduced in the reaction. According to the data of infrared spectroscopy (139), the allyl ligands formed in the surface organometallic complexes of Ni and Cr keep the 7r-allyl character of the metal-ligand bond. [Pg.190]

Complexes. The structure of an n a charge-transfer complex between quinoxaline and two iodine atoms has been obtained by X-ray analysis and its thermal stability compared with those of related complexes. The hydrogen bond complex between quinoxaline and phenol has been studied by infrared spectroscopy and compared with many similar complexes. Adducts of quinoxaline with uranium salts and with a variety of copper(II) alkano-ates have been prepared, characterized, and studied with respect to IR spectra or magnetic properties, respectively. [Pg.94]

The treatment of LB films of copper behenate (10-50 layers) with H2S gas resulted in formation of the semiconductor CU2S [177]. In this case, the LB films of behenic acid alone were formed and then exposed to solutions of copper chloride. Conversion of the carboxyl groups to carboxylate groups upon copper complexation was confirmed by infrared spectroscopy. Resistivity measurements versus temperature confirmed the formation of semiconducting CU2S in one case, and showed a linear increase in log(R) versus IT K). All of the samples became insulators on exposure to air maintaining the conductivity required storage under vacuum. The formation of CuiS sheets in some of the sample was concluded from optical microscopy and resistivity data. [Pg.91]

Ellis Wilson (1991, 1992) examined cement formation between a large number of metal oxides and PVPA solutions. They concluded that setting behaviour was to be explained mainly in terms of basicity and reactivity, noting that cements were formed by reactive basic or amphoteric oxides and not by inert or acidic ones (Table 8.3). Using infrared spectroscopy they found that, with one exception, cement formation was associated with salt formation the phosphonic add band at 990 cm diminished as the phosphonate band at 1060 cm" developed. The anomalous result was that the acidic boric oxide formed a cement which, however, was soluble in water. This was the result, not of an add-base readion, but of complex formation. Infrared spectroscopy showed a shift in the P=0 band from 1160 cm" to 1130 cm", indicative of an interaction of the type... [Pg.311]

Little is known of the setting reaction and structure of EBA cement. The absence of an infrared band at 1750 cm" in the set cement indicates that no unreacted COOH is present (Brauer, 1972). So far, it is not certain whether zinc forms a six-membered chelate or merely a simple salt with EBA. Neither infrared spectroscopy nor solution studies are able to distinguish between these two forms. Eugenol is much less readily extracted and so more firmly bound in the complex than is EBA. The suspicion is that the EBA cement is fundamentally more prone to hydrolysis than the ZOE cement. [Pg.339]

F. C. Sanchez, T. Hancewicz, B.G.M. Vandeginste and D.L. Massart, Resolution of complex liquid chromatography Fourier transform infrared spectroscopy data. Anal. Chem., 69 (1997) 1477-1484. [Pg.305]


See other pages where Infrared spectroscopy complexes is mentioned: [Pg.2117]    [Pg.2449]    [Pg.1136]    [Pg.158]    [Pg.377]    [Pg.166]    [Pg.511]    [Pg.280]    [Pg.260]    [Pg.416]    [Pg.260]    [Pg.269]    [Pg.353]    [Pg.81]    [Pg.745]    [Pg.389]    [Pg.300]    [Pg.144]    [Pg.194]    [Pg.112]    [Pg.134]    [Pg.384]    [Pg.90]    [Pg.6]    [Pg.100]    [Pg.200]    [Pg.244]    [Pg.250]    [Pg.349]    [Pg.362]    [Pg.110]    [Pg.1136]    [Pg.95]    [Pg.734]    [Pg.29]    [Pg.113]   
See also in sourсe #XX -- [ Pg.794 , Pg.795 , Pg.796 ]

See also in sourсe #XX -- [ Pg.794 , Pg.795 , Pg.796 ]




SEARCH



Complexation infrared spectroscopy studies

Dihalo- and monohalocarbene complexes infrared spectroscopy

Infrared band spectroscopy adsorption complex

Infrared complexes

Infrared spectroscopy halogen-bond complexes

Infrared spectroscopy metal-dioxygen complexes

Infrared spectroscopy, of -complexes

Sulfoxide complexes infrared spectroscopy

Transition metal complexes infrared spectroscopy

© 2024 chempedia.info