Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Infrared spectroscopy Bound fraction

The polymer concentration profile has been measured by small-angle neutron scattering from polymers adsorbed onto colloidal particles [70,71] or porous media [72] and from flat surfaces with neutron reflectivity [73] and optical reflectometry [74]. The fraction of segments bound to the solid surface is nicely revealed in NMR studies [75], infrared spectroscopy [76], and electron spin resonance [77]. An example of the concentration profile obtained by inverting neutron scattering measurements appears in Fig. XI-7, showing a typical surface volume fraction of 0.25 and layer thickness of 10-15 nm. The profile decays rapidly and monotonically but does not exhibit power-law scaling [70]. [Pg.402]

Morrissey 53) used transmission infrared spectroscopy to study protein adsorption onto silica particles in a heavy water (DzO) buffer. By observing the shift in the amide I absorption band, he could deduce the fraction of protein carbonyl groups involved in bonding to the silica surface. He found that bovine IgG had a bound fraction of 0.20 at low bulk solution concentrations, but only about 0.02 at high solution concentrations. However, neither prothrombin nor bovine serum albumin exhibited a change in bound fraction with concentration. Parallel experiments with flat silica plates using ellipsometry showed that the IgG-adsorbed layers had an optical thickness of 140 A and a surface concentration of 1.7 mg/m2 at low bulk solution concentration — in concentrated solutions the surface amount was 3.4 mg/m2 with a thickness of 320 A (Fig. 17). [Pg.32]

Distribution between trains and loops in molecules adsorbed at solid/Iiquid interfaces is also possible and has been shown to occur for flexible polymers. There are some indications that protein molecules at solid/liquid interfaces do not always undergo the drastic conformational changes that occur at fluid/fluid interfaces. At a solid/liquid interface, an adsorbing molecule cannot penetrate the solid phase. Furthermore, adsorption may be confined to sites and thus be localized. Using infrared difference spectroscopy, Morrissey and Stromberg (1974) found a bound fraction (number of carbonyl surface... [Pg.298]

Carbonyl metalloimmunoassay (CMIA) is a heterogeneous competitive-type metalloimmunoassay using metal carbonyl complexes as tracers, organic solvents (ethyl acetate, isopropyl ether) to separate the free and bound fractions, and Fourier-transform infrared (FT-IR) spectroscopy for quantification. The choice of FT-IR... [Pg.283]


See other pages where Infrared spectroscopy Bound fraction is mentioned: [Pg.260]    [Pg.134]    [Pg.2507]    [Pg.237]    [Pg.18]    [Pg.381]    [Pg.352]    [Pg.97]    [Pg.26]    [Pg.38]   
See also in sourсe #XX -- [ Pg.48 ]




SEARCH



Bound fraction

Fractionation spectroscopy

© 2024 chempedia.info